a) Ta có:
\(\dfrac{AM}{AB}=\dfrac{3}{5}\)
\(\dfrac{AN}{AC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\Rightarrow\)\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Trong \(\Delta\)ABC có:
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\Rightarrow\) MN//BC (định lí ta lét đảo)
b) Xét \(\Delta\)AMN và \(\Delta\)ABC có:
\(\widehat{A}\) là góc chung
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\) (cmt)
\(\Rightarrow\) \(\Delta\)AMN đồng dạng vs \(\Delta\)ABC
c) Vì MN//BC (cmt)
\(\Rightarrow\) \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)
\(\Rightarrow\) BC = \(\dfrac{MN.AB}{AM}\)
= \(\dfrac{4.5}{3}\) = \(\dfrac{20}{3}\) (cm)