Luyện tập về ba trường hợp bằng nhau của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Blink

Cho tam giác ABC(AB<AC) có M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD

a, Chứng minh tam giác AMB=tam giác CMD

b, Chứng minh AD=CB và AD//CB

c, Gọi N là trung điểm của A. Trên tia đối của tia NC lấy điểm K sao cho NC=NK. Chứng minh D,A,K thẳng hàng

RIKA
16 tháng 12 2022 lúc 21:15

UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ 

a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng)  Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC)  Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 21:29

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AB//CD và AB=CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

mà AD//BC

nên D,A,K thẳng hàng


Các câu hỏi tương tự
Đặng Thúy Ngân
Xem chi tiết
Linh Nguyễn
Xem chi tiết
nguyễn hồng hiên
Xem chi tiết
Vô liêm sỉ Ngyễn
Xem chi tiết
Lâm Phương Thanh
Xem chi tiết
Tiến Phát Nguyễn
Xem chi tiết
Võ Xuân Cường
Xem chi tiết
Nguyễn Lê Thúy Nga
Xem chi tiết
Huyền nguyễn
Xem chi tiết