a, Xét ▲ABM và ▲ECM có:
^B=^C(AB┴BC;CE┴BC)
BM=CM(AM là đường trung tuyến)
g AMB=g EMC(2 ^ đối đỉnh)
=>▲ABM=▲ECM(g.c.g)
a, Xét ▲ABM và ▲ECM có:
^B=^C(AB┴BC;CE┴BC)
BM=CM(AM là đường trung tuyến)
g AMB=g EMC(2 ^ đối đỉnh)
=>▲ABM=▲ECM(g.c.g)
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
cho tam giác ABC cân tại A(AB>BC),đường trung trực của AC cắt BC tại M,trên tia đối AM lấy điểm N sao cho AN=BM.Kẻ CI vuông góc với MN tại I.Chứng minh rằng I là trung điểm MN. Giúp e nha mn(e đang cần gấp!!!)
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm M sao cho BA=BM. Từ M vẽ đường thẳng vuông góc với BC cắt AC tại E. Trên tia đối của AB lấy điểm K sao cho A là trung điểm của BK. Gọi I là trung điểm của KC, CA cắt BI tại G, KG cắt BC tại N.
Chứng minh NI// BK và NI = AK.
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
Cho tam giác ABC có M là trung điểm BC . Kẻ BE vuông góc AM tại E , CF vuông góc với AM tại F .
a/ Chứng minh : tam giác BEM= tam giác CFM
b/ chứng minh : BE=CF
c/ chứng minh : BF//CE