B1: Cho tam giác ABC , BM và CN là hai đường trung tuyến cắt nhau tại G . Gọi I,K thứ tự là trung điểm của GB và GC a) Cm : MN=IK và MN // IK b) tìm điều kiện của tam giác ABC để tứ giác MNBC là hình thang cân B2: cho hình thang ABCD (AB//CD). Trên cạnh AD lấy 2 điểm M,N sao cho AM=MN=ND. Từ M và N kẻ các đường thẳng // với hai đáy của hình thang và cắt BC theo thứ tự tại P,Q a)cm: BP=PQ=QC b) biết AB = 5cm,NQ =9cm. Tính MP và DC Giúp mình với gấp ạ 1 câu cũng đc :33
Hình thang ABCD có AB song song CD cóAB < CD , Các tia phân giác của góc A và D cắt nhau ở E . Các tia phân giác của các góc B và C cắt nhau ở F . Gọi M,N theo thứ tự là trung điểm của AD,BC . Gọi G là giao điểm của AE và CD .
a) Chứng minh: AED=90 độ và AE=EG .
b) Chứng minh: M,E,F,N thẳng hàng
c) Tính các độ dài MN,ME,FN theo .a,b,c,d
LÀM GẤP GIÚP E CÁI Ạ
Cho hình thang cân ABCD(AB//CD).AB=6cm,CD=10cm.AD cắt BC tại O
a)Chứng minh tam giác OAB cân
b)Gọi M,N lần lượt là trung điểm của AD và BC tính MN.
Cho tam giác ABC vuông tại B , ^A = 60^0 , phân giác AD . Gọi M , N , I theo thứ tự là trung điểm của AD , AC , CD
a ) Chứng minh rằng BMNI là hình thang cân
b ) Tính các góc của tứ giác BMNI
Cho tam giác ABC cân tại A . Gọi M,N lần lượt là trung điểm của AB,AC.
Chứng minh: tứ giác MNCB là hình thang cân
Cho hình thang ABCD (AB //CD), M là trung điểm của AD, N là trung điểm của BC. Gọi I, K theo thứ tự là giao điểm của MN với BD, AC. Cho biết AB = 6cm, CD = 14 cm. Tính độ dài MI, IK, KN ?
Cho tam giác ABC cân tại A, AM là đường trung tuyến. Gọi N là trung điểm AC A/ cho biết MN= 3cm. Tính độ dài cạnh AB B/ chứng minh tứ giác ABMN là hình thang
giải giúp mình bài này nhé:
cho tứ giác ABCD không là hình thang và có AB=CD, AC cắt BD tại O. gọi M và N ần lượt là trung điểm của AD và BC. Đoạn thẳng MN lần lượt cắt các đoạn thẳng AC và BD tại I và K. Chứng minh tam giác OIK là tam giác cân
Cho hình thang ABCD (AB//CD). Gọi giao điểm của phân giác góc A và D là I, giao điểm của phân giác góc B và C là J.
a) Chứng minh IJ//AB
b) Chứng minh IJ đi qua trung điểm của AD và BC.