Cho tam giác ABC vuông tại A có AB=5cm;AC=12cm.Tia phân giác của góc ABC cắt AC tại D.Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K. Chứng minh tam giác BKC cân và B,G,D thẳng hàng ( với G là trọng tâm của tam giác BKC.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC
Cho tam giác ABC cân tại A, Â = 120° Từ B kẻ đường thẳng vuông góc với AB, từ C kẻ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D. a) Chứng minh ∆DAB = ∆DAC b) Chứng minh ∆ DBC là tam giác đều. c) Gọi H là giao điểm của AD và BC . Chứng minh 2BH + AD > AB + BD.
Cho tam giác ABC vuông tại A. BI là tia phân giác của góc ABC (I thuộc AC). Kẻ ID vuông góc với BC tại D.
a) Chứng minh rằng .
b) Chứng minh cân và BI là đường trung trực của đoạn thẳng AD.
c) Kéo dài DI cắt đường thẳng BA tại E. Chứng minh ID < IE và IE = IC.
d) Tam giác ABC cần có thêm điều kiện gì để điểm I cách đều ba đỉnh của tam giác BEC.
Cho tam giác ABC cân tại A.Tia phân giác góc B cắt AC tại M, tia phân giác góc C cắt AB tại N
a)Chứng minh tam giác AMN cân và MN//BC
b) Gọi I là trung điểm của BC , E là giao điểm của CN và BM.Chứng minh A,I,E thẳng hàng
Cho tam giác ABC cân tại A, gọi M, N lần lượt là trung điểm của AB, AC. Các đường trung trực của AB, AC cắt nhau tại O. a) Chứng minh AD là phân giác của góc BAC. b) Chứng minh tam giác OBC cân c) Chứng minh MN // BC. d) Chứng minh AO vuông góc với MN.
Cho tam giác ABC cân A . Kẻ phân giác CD (D∈ AB ) . Qua D vẽ đường thẳng vuông góc với CD , cắt BC tại F và CA tại K . Đường thẳng kẻ qua D và song song với BC cắt AC tại E . Phân giác của góc BAC cắt DE tại M . chứng minh rằng: a) Hai tam giác CDF và CDK bằng nhau. b) Các tam giác DEC và DEK là các tam giác cân. c) CF BD = 2 . d) MD=1/4 CF .
. Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác của góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác DAE cân
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh tam giác BDF cân tại B.
c) Chứng minh BD = CE.
Cho tam giác ABC cân đỉnh A, gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D. Từ D kẻ
đường vuông góc với AM tại K và kéo dài cắt cạnh AC tại E. Chứng minh AD AE