a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: AK=HC
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: AK=HC
Cho tam giác ABC vuông tại A biết AB = 9 cm AC bằng 12 cm Kẻ BD là tia phân giác của góc B( d thuộc AC) kẻ dh vuông góc với BC( H thuộc BC). Trên tia đối của tia ab lấy điểm K sao cho a k = HC a) Chứng minh tam giác ABD= tam giác HBD b) So sánh DA và DC c) Chứng minh ba điểm k,d,hthẳng hàng
Bài 1(4 điểm): Cho tam giác ABC vuông tại
A. Tia phân giác của góc B cắt cạnh AC tại D.
Kẻ DH vuông góc với BC tại H.
a) Chứng minh tam giác ABD = tam giác
HBD
b) Hai đường thắng DH và AB cắt nhau tại E.
Chứng minh tam giác BEC cân.
c) Chứng minh AD < DC.
Câu 6: Cho tam giác ABC vuông tại A, có B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh:tam giác ABD = tam giác EBD.
b/ Chứng minh: tam giácABE là tam giác đều.
c/ Tính độ dài cạnh BC.
Bài 10. Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: ABD = EBD.
b) Chứng minh: ABE là tam giác đều.
c) Tính độ dài cạnh BC.
cho tam giác ABC vuông tại A,đường phân giác BM(M thuộc AC).từ M kẻ đường thẳng MK vuông góc với BC(K thuộc BC)
a, chuwmgs minh tam giác BAM=tam giác BKM
b,Từ A kẻ đường thẳng song song với MK cắt BC tại D. Chứng minh AK là tia phân giác góc DAC
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại E Kẻ EH vuông góc với BC ( H Thuộc BC) a, Cho AB = 6 cm BC = 5 cm Tính AC?? b, Chứng Minh AB = BH c, kẻ AM vuông góc với BC tại M. Chứng minh AH là tia phân giác của góc MAC d, gọi K là giao điểm của AM và BE. Chứng minh tam giác AKE là tam giác cân ( Lưu ý : vẽ hình ms 5*)
Cho tam giác ABC vuông tại A, có 𝐵̂ = 60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E. a) Tính số đo góc C b) Chứng minh: ABD = EBD.
Cho tam giác aBC vuông tại A , Có góc C =30' . tia phân giác của góc B cắt tại AC tại D . Vẽ DE vuông góc với BC tại E . Qua điểm C vẽ đường thẳng vuông góc với tia BD tại H .
a. Chứng minh : tam giác ABD= tam giác EBD
b. Tính góc DBC và chứng minh : DB=DC
c. So Sánh : HC và HD
Cho tam giác ABC vuông tại A ( AB<AC) tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Vẽ AH vuông góc với BC tại H. Chứng minh rằng:
a) tam giác ABD= tam giác EBD và AD=ED
b) AH song song với BE