Cho tam giác ABC vuông tại A. Phân giác của góc B cắt AC tại D. Lấy E trên đoạn thẳng BC sao cho BE = BA. Gọi I là giao điểm của BD và AE.
a) Chứng minh: Tam giác BAD = tam giác BED
b) So sánh AD và ED, tính góc BED
c) Chứng minh: AI = EI và AE vuông góc BD.
Cho tam giác ABC . Góc A = 90 độ: tia phân giác BD của góc B(D thuộc AC). Trên cạnh BC lấy điểm E sao cho BE=BA
Chứng minh
a) AD = DE
b) Góc EDC = góc ABC
c) AE vuông góc BD
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
d) Chứng minh Dn vuông góc DH
Cho tam giác ABC ( góc A = 90 độ ); BD là tia phân giác của góc B ( D thuộc AC ). trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh: DE vuông BE
b) Chứng minh: BD là đường trung trực của AE
Cho tam giác ABC vuông tại A có AB = 6cm ; AC = 8cm .
a) Tính độ dài BC .
b) Phân giác góc B cắt cạnh AC tại M. Lấy điểm D thuộc BC sao cho BD = BA. Chứng minh tam giác ABM bằng tam giác DBM
c) MD và AB kéo dài cắt nhau tại I. Chứng minh tam giác MAI bằng tam giác MDC.
Cho tam giác ABC đều . Trên cạnh BC lấy điểm D , sao cho BD = 1/3 BA , qua D kẻ đường thẳng vuông góc với AB cắt BC ở E , qua E kẻ đường thẳng vuông góc với BC cắt AC ở F .
a) Chứng minh : DF vuông góc AC
b) Chứng minh : Tam giác DEF đều
c) Trên tia đối của các tia DE , FD , EF lần lượt lấy các điểm P , M ,N sao cho DF=FM=EN . Tam giác MNP là tam giác gì ? Vì sao ?
d) Chứng minh rằng : Tam giác ABC , tam giác DEF và tam giác MPN có chung trọng tâm
Bài 1: Cho tam giác ABC cân tại A , trên cạnh BC lấy hai điểm D và E sao cho BE = ED=DC.
a) Chứng minh tam giác ABE bằng tam giác ACD rồi suy ra tam giác ADE là tam giác cân.
b) Vẽ DH vuông góc với AB ( H thuộc AB ), EK vuông góc với AC ( K thuộc AC ). Chứng minh HD = EK.
c) Nếu cho số đo góc DAE là 60 độ. Tính số đo góc BEA.
1) Cho tam giác ABC có góc B = 2 lần góc c tia P. giác của Góc b cắt AC ở D trên tia đối của tia BD lấy điểm E sao cho BE = AC . Trên tia đối của tia CD lấy điểm K sao cho CK = AB . Chứng minh rằng : AE = AK
2) cho tam giác ABC các tia PG của góc B và C cắt tại O . Kẻ OD vuông với AD , OE Vuông với AD . Chứng minh rằng : OD = OE
3) cho tam giác ABC có AB = AC lấy điểm d trên cạnh AB . Điểm E trên cạnh AD , sao cho AD = AE Chứng minh rằng : BE = CD
Cho tam giác ABC cân tại A. Trên cạnh BC lấy 1 điểm D( BD < DC) .Trên tia đối của tia CB lấy điểm E sao cho BD= CE. Qua D và E kẻ các đường vuông góc với BC cắt AB và AC lần lượt tại M và N.
a) Chứng minh: DM= EN
b) Gọi I là giao điểm của MN với BC. Chứng minh: I là trung điểm của MN
c) Qua I kẻ đường vuông góc với MN cắt phân giác của góc BAC tại O.
Chứng minh: tma giác ABO= ACO
d) Chứng minh: OC vuông góc với AN