Cho tam giác ABC vuông tại A. Kẻ đường cao AH (H \(\varepsilon\)BC ), đường phân giác
BD của góc ABC cắt AH tại E (E \(\varepsilon\)AH )và cắt AC tại D (D thuộc AC)
a) Chứng minh tam giác HAB ~ tam giác ABC . Từ đó suy ra \(BA^2\)=BH. BC
b) Biết AB =12cm, AC = 16cm . Tính AD .
c) Chứng minh \(\frac{DA}{DC}=\frac{BE}{BD}\)
a. Xét 2 tam vuông HAB và ABC:
\(\widehat{B}\) chung
Suy ra: \(\Delta HBA\sim\Delta ABC\) (g.g)
=> \(\frac{AB}{BC}=\frac{HB}{AB}\)
=> AB2 = HB.BC
b. Xét tam giác vuông ABC có : BC2 = AB2 + AC2
Hay BC2 = 122 + 162
=> BC2 = 144 + 256 = 400
=> BC = \(\sqrt{400}=20\) (cm)
Tam giác ABC có: AD là đường phân giác của \(\widehat{ABC}\)
=> \(\frac{AB}{AD}=\frac{BC}{CD}\) (Tính chất đường phân giác của tam giác)
Hay\(\frac{AB}{AD}=\frac{BC}{AC-AD}\)
=> \(\frac{12}{AD}=\frac{20}{16-AD}\)
=> 12(16 - AD) = 20AD
=> 192 - 12AD = 20AD
=> -12AD - 20AD = -192
=> -32AD = -192
=> AD = 6 (cm)
c. Để mình giải sau nha bạn!!!
Câu c) :
Xét tam giác vuông ABD ta có : BD2 = AB2 + AD2
Hay BD2 = 122 + 62
BD2 = 144 + 36 = 180
=> BD = \(\sqrt{180}=6\sqrt{5}\) (cm)
Ta có : AD + DC = AC
Hay 6 + DC = 16
=> DC = 16 - 6 = 10 (cm)
Ta có : \(\Delta HBA\sim\Delta ABC\) (C/M ở câu a)
=> \(\frac{HB}{AB}=\frac{AB}{BC}\)
Hay \(\frac{HB}{12}=\frac{12}{20}\)
=> HB = \(\frac{12.12}{20}\) = 7,2 (cm)
Xét 2 tam giác vuông ABD và HBE:
\(\widehat{ABD}=\widehat{HBE}\) (BD là đường phân giác của \(\widehat{ABC}\))
Suy ra: \(\Delta ABD\sim\Delta HBE\) (g.g)
=> \(\frac{AB}{HB}=\frac{BD}{BE}\)
Hay \(\frac{12}{7,2}=\frac{6\sqrt{5}}{BE}\)
=> BE = \(\frac{7,2.6\sqrt{5}}{12}=\frac{18\sqrt{5}}{5}\)
Ta có : \(\frac{6}{10}=\frac{\frac{18\sqrt{5}}{5}}{6\sqrt{5}}\)
Hay \(\frac{DA}{DC}=\frac{BE}{BD}\) (đpcm)