Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=5^2-3^2=16\)
hay CH=4(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=3^2+2.25^2=14.0625\)
hay AB=3,75(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=2,25+4=6,25(cm)
Chu vi của tam giác ABH là:
\(C_{ABH}=AB+BH+HA=3.75+2.25+3=9\left(cm\right)\)
Chu vi của tam giác ACH là:
\(C_{ACH}=AC+CH+AH=5+3+4=12\left(cm\right)\)
Chu vi của tam giác ABC là:
\(C_{ABC}=AB+AC+BC=3.75+6.25+5=15\left(cm\right)\)