Cho tam giác ABC vuông tại A , H là một điểm tùy ý trên cạnh AB.Qua điểm H , kẻ đường thẳng d vuông góc BC tại M và cắt AC kéo dài tại O.
a) CMR: tam giác ABC đồng dạng tam giác MOC
b) CMR: BH.BA=BM.BC
c) Cho AB=8cm,AC=6cm.Diện tích tam giác BOC=250cm2. Tính diện tích tam giác ACM
d,Tia CH cắt OB tại k.CMR CK vuông góc OB
a) Xét ΔABC vuông tại A và ΔMOC vuông tại M có
\(\widehat{MCO}\) chung
Do đó: ΔABC\(\sim\)ΔMOC(g-g)
b) Xét ΔBMH vuông tại M và ΔBAC vuông tại A có
\(\widehat{MBH}\) chung
Do đó: ΔBMH\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BM}{BA}=\dfrac{BH}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(BM\cdot BC=BA\cdot BH\)(đpcm)