Cho tam giác ABC vuông tại A. GỌi M là điểm di động trên cạnh AC. Từ C vẽ đường thẳng vuông góc với tia BM cắt tia BM tại H, cắt tia BA tại O. Chứng minh:
a, OA.OB=OC.OH
b, góc OHA không đổi.
c, BM.BH+CM.CA không đổi.
Cho tam giác ABC vuông tại A. Gọi M là một điểm di động trên AC. Từ C vẽ đường thẳng vuong góc với tia BM cắt tia BM tại H, cắt tia BA tại O. Chứng minh rằng:
a) OA.OB = OC.OH
b) Góc OHA có số đo không đổi
c) Tổng BM.BH + CM.CA không đổi
Cho tam giác ABC vuông tại A. Gọi M là 1 điểm di động trên AC. Từ C vẽ đường thẳng vuông góc với tia BM tại H, cắt tia BA tại O. Chứng minh rằng
1/ OA.OB= OC. OH
2/ BM. BH + CM. CA không đổi
Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E.
a) Chứng minh: EA.EB = ED.EC và góc EAD = góc ECB
b) Cho góc BMC = 1200 và SAED = 36 cm2. Tính SECB?
c) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi.
d) Kẻ DH ⊥ BC (H∈ BC). Gọi P, Q lần lượt là trung điểm của các đoạn thẳng BH, DH. Chứng minh CQ ⊥ PD.
Bài 1: Tam giác ABC vuông tại A có góc B =50 độ,gọi M là điểm di chuyển trên AC,M không trùng với A và C,kẻ CH vuông góc với BM tại H,CH cắt BA tại O.
a, Chứng minh OA.OB=OC.OD
b, Tính góc OAH
Chứng minh rằng khi M di chuyển trên AC thì BM.BH + CM.CA không đổi
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc).
a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ;
b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ;
c) chứng minh rằng ae=ab ;
d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham