Cho tam giác ABC vuông tại A, chân H của đường cao AH chia cạnh huyền BC thành hai đoạn có độ dài 4cm và 9 cm
Gọi D và E là hình chiếu của H trên AB và AC
a) Tính độ dài DE
b) Các đường thẳng vuông góc với DE tại D và E cắt BC theo thứ tự tại M và N. Chứng minh M là trung điểm của BF, N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Cho tam giác ABC vuông tại A có AH là đường cao.AB=15 AH=12
a) CM tam giác AHB đồng dạng tam giác CHA
b)Tính BH,HC,AC
c)Vẽ AM là tia phân giác góc BAC. Tính BM
d) Lấy E trên AC sao cho HE song song AB. Gọi N là trung điểm của AB,CN cắt nhau tại I. Chứng minh I là trung điểm của HE
Cho tam giác ABC vuông tại A ( AC > AB ), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
a) Chứng minh tam giác ABC đồng dạng với tam giác HAC
b) Chứng minh EC . AC = DC. BC
c) Chứng minh tam giác BEC = tam giác ADC và tam giác ABE vuông cân
Bài1. Cho tam giác ABC vuông tại A. Kẻ đường cao AH (H thuộc BC).
a) Tìm các cặp tam giác đồng dạng.
b) Chứng minh AH2=BH.CH; AB2 = BH.BC; AC2 = CH.BC
c) Biết BH=9cm, CH = 16cm. Tính độ dài các cạnh của tam giác ABC.
Cho tam giác ABC(AB<AC) có đường cao AH . Gọi I là trung điểm của AC .Kẻ IN vuông góc với BC(N thuộc BC) . a) Chứng minh tam giác ABC đồng dạng với tam giác NIC và CA.CI=CB.CN . b) Chúng minh AB2=BH.BC=NB2-NC2
cho tam giác ABC vuông tại A có AB<AC.Kẻ đường cao AH.
a) chứng minh tam giác HAC và tam giác ABC đồng dạng
b)Chứng minh AH^2=HB.HC
c)Gọi D;E lần lượt là trung điểm của AB;BC.cHỨNG TỎ RẰNG CH.CB=4DE^2
Cho tam giác ABC vuông tại A , biết AB=12cm , AC= 16cm kẻ AH vuông góc với BC ( H thuộc BC)
a. chứng minh tam giác ABC đồng dạng với tam giác HBA
b.tính BC, AH , HB
c. Kẻ đường phân giác BD , tính AD/CD