Sửa đề: AH=12cm; AB<AC và BC=25cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
hay \(HB\cdot HC=12^2=144\)
Ta có: HB+HC=BC(H nằm giữa B và C)
nên HB+HC=25(cm)
Vì AB<AC nên HB<HC
mà HB+HC=25(cm)
nên \(\left\{{}\begin{matrix}HB< \dfrac{25}{2}=12.5\left(cm\right)\\HC>\dfrac{25}{2}=12.5\left(cm\right)\end{matrix}\right.\)
Ta có: HB+HC=25(cmt)
nên HB=25-HC
Ta có: \(HB\cdot HC=144\)(cmt)
nên \(\left(25-HC\right)\cdot HC=144\)
\(\Leftrightarrow25HC-HC^2-144=0\)
\(\Leftrightarrow HC^2-25HC+144=0\)
\(\Leftrightarrow\left(HC-16\right)\left(HC-9\right)=0\)
\(\Leftrightarrow HC=16\left(cm\right)\)
\(\Leftrightarrow HB=BC-HC=25-16=9\left(cm\right)\)
Vậy: HB=9cm; HC=16cm; \(S_{ABH}=54\left(cm^2\right)\)