a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔABE=ΔHBE
b: Ta có: \(\widehat{HEC}+\widehat{AEH}=180^0\)
\(\widehat{AEH}+\widehat{ABH}=180^0\)
Do đó: \(\widehat{HEC}=\widehat{ABH}\)
hay \(\widehat{HEC}=2\cdot\widehat{ABE}\)
c: Ta có: EA=EH
mà EH<EC
nên EA<EC