gọi MH giao BA tại S, HN giao AC tại O
tứ giác ASHO có ^ASH = ^SAO = ^HOA = 90 độ
=> ASHO là HCN (vì là tứ giác có 3 góc vuông)
=> SH = AO, SA = HO (t/c HCN)
SH = AO mà SM = SH (vì M đối xứng H qua AB)
=> SM = AO
SA = HO mà HO = ON ( H đối xứng N qua AC)
=> SA = ON
xét tam g SAM vuông tại S
tam g OAN vuông tại O
có SM = OA (cmt)
SA = ON (cmt)
=> tam g SAM = tg OAN (2 cgv)
=> MA = AN (2 cạnh tương ứng)
b) xét tam g SAM vuông tại S
tam g SAH vuông tại S
có SM = SH (M đx Hqua AB)
SA là cạnh chung
=> tam g SAM = tam g SAH (2cgv)
=> \(\widehat{A_1}=\widehat{A_2}\) ( 2 góc tương ứng) (1)
cm tương tự ta được tam g OAH = tam g OAN (2 cạnh góc vuông)
=> \(\widehat{A_3}=\widehat{A_4}\) (2 góc t/ư) (2)
có \(\widehat{A_2}+\widehat{A_3}=90^0\) ( tam g ABC vuông tại A ) (3)
từ (1), (2) và (3) => \(\widehat{A_1}+\widehat{A_4}=90^0\) (4)
từ (3) và (4) => \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=180^0\) hay ^MAN =180ĐỘ
=> M,A,N thẳng hàng
mà MA = AN (cm câu a)
=> M đx N qua A
c)có ASHO là HCN (cm câu a)
=> ^SHO = 90ĐỘ hay ^MHN =90ĐỘ
=> tam g MHN vuông tẠI H
d)
có ^SHA + ^AHO = ^SHO = 90 ĐỘ (ASHO là HCN )
^AHO + ^CHO = ^AHC = 90ĐỘ (vì AH vuông BC)
=> ^SHA = ^CHO
xét tam g AHO vuông tại O
tam g ANO vuông tại O
có HO = ON (H đx N qua AC)
AO là cạnh chung
=> tam g AHO = tam g ANO (2cgv)
=> ^AHO = ^ANO ( 2 góc t/ư)
cm tương tự ta đc tam g AOC = g NOC (2cgv)
=> ^ OHC = ^ONC (2 góc t/ư)
mà ^OHC = ^SHA (cmt)
=> ^ ONC = ^SHA
có ^SHA + ^ AHO = 90 ĐỘ ( = ^ SHO)
mà ^ SHA = ^ONC (cmt)
^ANO = ^AHO (cmt)
=> ^ANO + ^ONC = 90ĐỘ = ^ANO
=> MN vuông NC