a)ΔABC có
BC2 = AB2 + AC2
⇒ AC2 = BC2 -AB2
⇒ AC = 16
b) xét Δ ABC và Δ AHB có
góc H = góc A = 900 ; góc B chung
⇒ Δ HBA ∼ Δ ABC (g-g)
⇒ \(\frac{AB}{BC}=\frac{BH}{AB}\)
⇒ BH = 7,2
a)ΔABC có
BC2 = AB2 + AC2
⇒ AC2 = BC2 -AB2
⇒ AC = 16
b) xét Δ ABC và Δ AHB có
góc H = góc A = 900 ; góc B chung
⇒ Δ HBA ∼ Δ ABC (g-g)
⇒ \(\frac{AB}{BC}=\frac{BH}{AB}\)
⇒ BH = 7,2
cho tam giác abc vuông tại a có ab=12cm ac=16cm. vẽ đường cao ah tính bc vẽ đường cao ad của tam giác abc tính bd cd
Tam giác vuông ABC có \(\widehat{A}=90^0;AB=12cm,AC=16cm\). Đường phân giác góc A cắt BC tại D
a) Tính BC, BD và CD
b) Vẽ đường cao AH, tính AH, HD và AD
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH.CD = BD.CH
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng:
a) AB là tia phân giác của góc DAH.
b) BH.CD = BD.CH
Cho tam giác ABC vuông tại A có AB=15cm ,AC =20cm,đường cao AH.Tia phân giác của góc HAB cắt HB tại D.Tia phân giác của góc HAC cắt HC tại E
a) Tính độ dài AH
b) Tính các độ dài HD,HE
giúp em vs ạ em đang cần lời giải gấp lắm em c.ơn trước ạ
Bài 3 (3 điểm): Cho ∆ABC có:
Kẻ đường cao AH (H ∈ BC ), tia phân giác góc A cắt BC tại D.
a) Chứng minh ∆HBA đồng dạng với ∆ABC và AB2 = BH.BC
b) Tính độ dài BC, BD và CD.
c) Tính tỉ số diện tích tam giác ABD và tam giác ACD.
d) Từ D kẻ DE vuông góc với AC (E ∈ AC). Tính độ dài đoạn DE.
Cho tam giác ABC vuông tại A(AB<AC), kẻ đường cao AH, trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thằng BC tại D. Chứng minh:
a)AB là tia phần giác của DAH
b)BH.CD=BD.CH
Bài 1: Cho tam giác abc có AB = 5cm AC = 7cm BC = 9cm. Đường phân giác AD. Tính DB, DC
Bài 2: Cho tam giác ABC vuông tại A. AB = 6cm, AC = 8cm, phân giác AD. Tính DB, DC