a: Xét tứ giác BMCD co
N là trung điểm chung của BC và MD
Do đó: BMCD là hình bình hành
b: Xét tứ giác AMDC có
AM//DC
AM=DC
góc MAC=90 độ
Do đó: AMDC là hình chữ nhật
a: Xét tứ giác BMCD co
N là trung điểm chung của BC và MD
Do đó: BMCD là hình bình hành
b: Xét tứ giác AMDC có
AM//DC
AM=DC
góc MAC=90 độ
Do đó: AMDC là hình chữ nhật
cho tam giác ABC, các điểm M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, trên tia đối của tia NP lấy điểm D sao cho ND=NP.
a) chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
cho tam giác ABC vuông tại A,trung tuyết AD .kẻ DM vuông góc với AB (M thuộc AB) kẻ DN vuông góc với AC (N thuộc AC )
a. tứ giác ANDM là hình gì ? vì sao ?
b. trên tia đối của tia ND lấy điểm E sao cho ND = NE .chứng minh AECD là hình thoi
c.l tam giác ABC có điều kiện gì để tam giác ANDM là hình vuông
Cho tam giác ABC,các điểm M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC.Trên tia đối của tia NP lấy điểm D sao cho ND=NP
a)Chứng minh: tứ giác ADCP là hình bình hành
b) gọi F là giao điểm của MN và DC. giả sử MN=3cm. tính BC và chứng minh FD=FC
c) gọi H là giao điểm của AP và MN; I là giao điểm của NP và HC. chứng minh B, I, F thẳng hàng
Mình biết làm câu a,b rồi các bạn làm câu c được không ?
Cho tam giác ABC vuông tại A. Gọi D là trung điểm của cạnh BC. Kẻ DE vuông góc AB, DF vuông góc AC
a) Chứng minh DA = DF
b) Chứng minh tứ giác AHEF là hình bình hành và tứ giác AHBD là hình thoi
c) Trên tia đối của tia FD lấy I sao cho FI = FD. Chứng minh I đối xứng với H qua A
Cho tam giác ABCvuông tại A có N,M,E lần lượt là trun điểm của AB,AC,BC trên tia đối của tia MB lấy điểm F sao cho MF=MB.
a/ Chứng minh tứ giác ABCF là hình bình hành.
b/ Trên đoạn AF lấy điểm D sao cho AD=CE. Chứng minh tứ giác AECD là hình thoi.
c/ Qua B vẽ đường thẳng vuông góc với BC, cắt đường thẳng CA tại I. chứng minh IN vuông góc với BM
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
Cho AABC vuông tại A, điểm M là trung điểm của BC. Gọi D và E lần lượt là hình chiếu của M trên AB và AC a) Chứng minh: tứ giác ADME là hình chữ nhật. b) Lấy điểm K đối xứng với M qua D. Tứ giác AEDK là hình gì? Vì sao? c) Chứng minh: tứ giác AMBK là hình thoi. d) Gọi I là điểm đối xứng với M qua E. Chứng minh: K đối xứng với I qua A.
Bài 1. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là trung điểm của AB.
a) Chứng minh tứ giác BKIC là hình thang cân.
b) Lấy N là điểm đối xứng với M qua I. Tứ giác AMCN là hình gì ? Vì sao ?
c) Chứng minh ba đường thẳng AM, BN và IK cùng đi qua một điểm.
cho tam giác abc vuông tại a , đường trung tuyến am. gọi i là trung tuyến của ac trên tia đối tia im lấy điểm k sao cho ik=im
a) chứng minh amck là hình thoi
b) chứng minh akmb là hình bình hành
c) tìm điều kiện của tam giác abc để tứ giác amck là hình vuông
Cho tam giác ABC cân tại A,đường cao AD. Gọi E là trung điểm của AC, f là điểm đối xứng với điểm D qua E a/ tứ giác ADCF là hình gì ? Vì sao? b/ chứng minh AF = BD c/gọi N là điểm đối xứng với A qua D. Chứng minh tứ giác ABNC là hình thoi d/tìm điều kiện của tam giác ABC để hình chữ nhật ADCF là hình vuông?