\(BC=\sqrt{AB^2+AC^2}=2a\)
\(AM=BM=CM=\frac{1}{2}BC=a\)\(\Rightarrow\Delta ABM\) đều
\(\Rightarrow\widehat{BAM}=60^0\Rightarrow\left(\overrightarrow{BA};\overrightarrow{AM}\right)=180^0-60^0=120^0\)
\(\overrightarrow{BA}.\overrightarrow{AM}=AB.AM.cos\left(\overrightarrow{BA};\overrightarrow{AM}\right)=a.a.cos120^0=-\frac{a^2}{2}\)