Bài 8: Các trường hợp đồng dạng của tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Linh Nguyễn

Cho tam giác ABC vuông tại A có AB bằng 6 cm,AC bằng 8 cm.Vẽ đường cao AH.Chứng minh: a)tam giác HCA đồng dạng với tam giác ACB b)Tính BC,AH,CH,BH c)Vẽ đường phân giác AD của tam giác ABC Tính BD,CD d)Trên AH lấy điểm K sao cho AK bằng 3,6 cm .Từ K kẻ đường thẳng song song với BC cắt AB và AC lần lượt tại M và N.Tính diện tích tứ giác BMNC đ) Trong tam giác ADB kẻ đường phân giác DE , trong tam giác ADC kẻ đường phân giác DF Cm:EA/EB.DB/DC.FC/FA=1(Hay EA.DB.FC=EB.DC.FA)

a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔHCA đồng dạng với ΔACB

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)


Các câu hỏi tương tự
Nguyễn lê trang
Xem chi tiết
Bảo Yến Thành
Xem chi tiết
Nguyễn Ngọc Ánh
Xem chi tiết
Molly Dyh
Xem chi tiết
Vũ Duy Khánh
Xem chi tiết
123 NGÔ THỊ HIẾU
Xem chi tiết
Vũ Nguyễn Hải Vân
Xem chi tiết
khanh ngan
Xem chi tiết
Linh Nga
Xem chi tiết