Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Gọi BD là đường phân giác của tam giác ABC.
a) Tính độ dài DA, DC.
b) Tia phân giác của góc C cắt BD tại I. Gọi M là trung điểm của BC. Chứng minh \(\widehat{BIM}\) = 90o
Cho tam giác ABC có AB > AC, BE là phân giác, BD là trung tuyến (E,D thuộc cạnh AC). Đường thẳng qua C vuông góc với BE cắt BE, BD, BA lần lượt tại F, G và K. DF cắt BC tại M. Chứng minh rằng
a) M là trung điểm của đoạn thẳng BC.
b)DA/DE=1+BK/DF
Bài 1:Cho tam giác ABC,AD là đường phân giác.
a)Tính độ dài đoạn thẳng BD,nếu AB=8cm,AC=6cm,DC=4,5cm.
b)Tính độ dài đoạn thẳng DC,nếu AB=8cm,AC=6cm,BC=7cm.
Cho tam giác ABC vuông tại A, AB=6cm, AC =8cm. Phân giác AD.
a)Tính độ dài BD và CD b) Kẻ DH vuông góc với AB. Tính DH, AD .
Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, Olà giao điểm của hai đường phân giác BD, AE
a) Tính độ dài đoạn thẳng AD
b) Chứng minh OG//AC
Cho tam giác ABC vuông tại A , có AB= 6, BC=10. Đường phân giác góc B cắt AC tại D. Tính độ dài AD, DC
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH.CD = BD.CH
Cho ΔABC ⊥ A, AB = 21cm, đường phân giác của góc A cắt BC tại D, đường thẳng qua D và song song với AB cắt AC tại E
a) Tính độ dài BD, DC, DE.
b) Tính diện tích tam giác ABD và tam giác ACD.
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng:
a) AB là tia phân giác của góc DAH.
b) BH.CD = BD.CH