a) Xét ΔABC có
N là trung điểm của AB(CN là đường trung tuyến ứng với cạnh AB của ΔABC)
M là trung điểm của AC(BN là đường trung tuyến ứng với cạnh AC của ΔABC)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒MN//BC và \(MN=\frac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔGBC có
H là trung điểm của GB(gt)
K là trung điểm của GC(gt)
Do đó: HK là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)
⇒HK//BC và \(HK=\frac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra MN//HK và MN=HK(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
\(\Leftrightarrow BC=\sqrt{225}=15cm\)
\(\Leftrightarrow2\cdot HK=15cm\)
hay \(HK=\frac{15cm}{2}=7.5cm\)
Vậy: HK=7,5cm