1: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>AH=DE và góc AED=góc AHD=góc B
2: Ta có; ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
1: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>AH=DE và góc AED=góc AHD=góc B
2: Ta có; ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
cho tam giác abc vuông tại a có ab<ac . gọi m là trung điểm của bc , kẻ md vuông góc với ab tại d , me vuông góc với ac tại e
a) chứng minh am = de
b) chứng minh tứ giác dmce là hình bình hành
c) gọi ah là đường cao của tam giác abc (h thuộc bc) . chứng minh tứ giác dhme là hình thang cân
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi D là trung điểm của AC, lấy điểm E đối xứng với H qua D.
a) Chứng minh tứ giác AHCE là hình chữ nhật
b) Qua A kẻ AI song song với HE (I ∈ đường thẳng BC). Chứng minh tứ giác AEHI là hình bình hành.
c) Trên tia đối của tia HA lấy điểm K sao cho AH = HK. Chứng minh AK là tia phân giác của góc IAC.
d) Tìm điều kiện của tam giác ABC để tứ giác CAIK là hình vuông, khi đó tứ giác AHCE là hình gì?
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE, HF vuông góc với AB, AC lần lượt tại E và F. Gọi M, N, P lần lượt là trung điểm của BC, HB, HC. a) Chứng minh tứ giác AEHF là hình chữ nhật b) Chứng minh EN = 1 2 HB c) C/ minh tứ giác NEFP là hình thăng vuông, tính diện tích của nó biết AB = 6m, AC = 8cm d) Chứng minh AM // EN
Cho tam giác ABC vuông tại A, có N và M lần lượt là trung điểm của AB và AC.
a) Chứng minh MNBC là hình thang.
b) Trên tia đối của tia MB lấy F sao cho MF = MB. Chứng minh AB song song CF.
c) Qua B vẽ đường thẳng vuông góc BC và cắt đường thẳng AC tại I. Chứng minh NI vuông góc BM.
giải giúp e với ạ
Cho tam giác ABC vuông tại A, có N và M lần lượt là trung điểm của AB và AC.
a) Chứng minh MNBC là hình thang.
b) Trên tia đối của tia MB lấy F sao cho MF = MB. Chứng minh AB song song CF.
c) Qua B vẽ đường thẳng vuông góc BC và cắt đường thẳng AC tại I. Chứng minh NI vuông góc BM.
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Cho tam giác ABC vuông tại a kẻ đường cao AH, HE vuông AB tại E, HF vuông AC tại F a) Chứng minh AEHF là hình chữ nhật b) Gọi M trung điểm HB. Chứng minh ME vuông EF c) Gọi AD là trung tuyến của tam giác ABC, N trung điểm HC. Chứng minh rằng: AD=ME+NF Mong mọi người giúp
Cho ∆ABC vuông tại A (AB < AC) có đường cao AN. Gọi D và F lần lượt là trung điểm BC
và AC. Qua D kẻ DE vuông góc với AB tại E.
a) Chứng minh EB = EA và chứng minh DF ⊥ AC.
b) Chứng minh AD = EF và chứng minh ∆ENF vuông.
c) Gọi H đối xứng D qua AB. Chứng minh HBDA là hình thoi.
d) Gọi K đối xứng D qua AC. Chứng minh ADCK là hình thoi. Và suy ra H; A và K thẳng hàng.
giải giúp em đi ạ
Cho ∆ABC vuông tại A (AB < AC) có đường cao AN. Gọi D và F lần lượt là trung điểm BC
và AC. Qua D kẻ DE vuông góc với AB tại E.
a) Chứng minh EB = EA và chứng minh DF ⊥ AC.
b) Chứng minh AD = EF và chứng minh ∆ENF vuông.
c) Gọi H đối xứng D qua AB. Chứng minh HBDA là hình thoi.
d) Gọi K đối xứng D qua AC. Chứng minh ADCK là hình thoi. Và suy ra H; A và K thẳng hàng.