51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc).
a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ;
b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ;
c) chứng minh rằng ae=ab ;
d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc). a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ; b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ; c) chứng minh rằng ae=ab ; d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
Cho ∆ABC vuông tại A (AB<AC) có đường cao AH
a) Chứng minh ∆HBA ∾ ∆ABC
b) Chứng minh AH2=HB.HC
c) Gọi E là điểm đối xứng với H qua điểm A, M là trung điểm của AH. Chứng minh: CM⊥BE tại K.
Câu 1 : Cho tam giác ABC cân tại A . GỌi các điểm P,Q,M lần lượt là trung điểm của AB,AC,BC.
1.Chứng minh tứ giác PQCM là hình bình hành
2.TRên tia đối của tia PM lấy điểm N sao cho PM=PN. Chứng minh NB vuông góc với BC
3.Đường thẳng đi qua điểm Q và song song với PC cắt BC tại F. CHứng minh N,Q,F thẳng hàng .
Câu 2:
Tìm giá trị nhỏ nhất của biểu thức \(B=2x^2+4y^2+4x^2y-10x^2-4y+2037\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC vuông tại A (AB > AC). Kẻ đường cao AH (H thuộc BC). Gọi M là trung điểm của AC. Trên tia đối của tia MH lấy điểm D sao cho MD = MH.
a) Chứng minh tứ giác ADCH là hình chữ nhật
b) Gọi E là điểm đối xứng của C qua H. Chứng minh tứ giác ADHE là hình bình hành
c) Vẽ EK vuông góc với AB tại K. Gọi I là trung điểm của AK. Chứng minh KE // IH
d) Gọi N là trung điểm của BE. Chứng minh HK vuông góc KN
bài 1:Cho tam giác ABC nhọn ( AB<AC). Kẻ đường cao AH. Gọi M là trung điểm của AB, N là điểm đối xứng của H qua M
a,chứng minh tứ giác ANBH là hình chữ nhật
b,Trên tia đối của tia HB lấy điểm E sao cho H là trung điểm của BE. Goi F là đối xứng với A qua H. Chứng minh tứ giác ABFE là hình thoi
c,Gọi I là giao điểm của AH và NE. Chứng minh MI//BC
d,Đường thẳng MI cắt AC tại K. Kẻ NQ vuông góc với KH tại Q. Chứng minh AQ vuông góc với BQ
HELP ME!!!!SẮP THI RỒI hhh???