a: Xét ΔBAC có BE/BA=BD/BC
nên ED//AC và ED=1/2AC
Ta có: ΔHAC vuông tại H
mà HF là đường trung tuyến
nên HF=AC/2=ED
b: Xét ΔBAC có AE/AB=AF/AC
nên EF//BC
=>EF//DH
mà ED=FH
nên EFDH là hình thang cân
a: Xét ΔBAC có BE/BA=BD/BC
nên ED//AC và ED=1/2AC
Ta có: ΔHAC vuông tại H
mà HF là đường trung tuyến
nên HF=AC/2=ED
b: Xét ΔBAC có AE/AB=AF/AC
nên EF//BC
=>EF//DH
mà ED=FH
nên EFDH là hình thang cân
Cho có tam giác ABC có Ab < AC. Gọi M, N, K lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh BMKN là hình thang
b) Hạ đường cao AH, biết AH cắt MK tại I. Chứng minh tam giác MAH cân tại M.
c) Chứng minh MNKH là hình thang cân.
Cho tam giác ABC cân tại ,A kẻ một đường thẳng song song với BC cắt các cạnh AB và AC lần lượt tại D và .E
a) Tứ giác BDEC là hình gì? Tại sao?
b) Gọi O là giao điểm của BE và .CD Chứng minh AO là trung trực của .BC
Cho tam giác abc (ab bé hơn ac), đường cao ah. m, n, p lần lượt là trung điểm của ab, ac, bc. chứng minh tứ giác mnph là hình thang cân
Cho tam giác ABC cân tại A . Gọi M,N lần lượt là trung điểm của AB,AC.
Chứng minh: tứ giác MNCB là hình thang cân
Chứng Minh: MN là đường trung bình của tam giác ABC
Cho hình thang cân ABCD có AB // CD và AB < CD. Kẻ đường cao AH, BK của hình thang ABCD (H, K thuộc CD).
1) Chứng minh tam giác ADH bằng tam giác BCK.
2) Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3) Giả sử BK=AB+CD/2. Tính góc tạo bởi hai đường chéo của hình thang.
Cho tam giác ABC ( AB<AC). Gọi D,E,M lần lượt là trung điểm của AB,AC,BC a) Biết BC=6cm, tính DE. b) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác DEMH là hình thang cân. c) Lấy điểm F đới xứng với D qua E. Chứng minh tứ giác BDFC là hình bình hanh. Tìm điều kiện của tam giác ABC đểvtuws giác BDFC là hình chữ nhật.
Cho hình thang cân ABCD (AB // CD, AB < CD), biết AC vuông góc với BD . Gọi M, N lần lượt là trung điểm của AD và BC. Kẻ AH vuông góc với CD (H thuộc CD) biết AH=10cm . Khi đó, độ dài MN là
A.9cm B.10cm C.6cm D.8cm
Cho hình thang cân ABCD (AB//CD, AB<CD)AD cắt BC tại O
a) CMR tam giác OAB cân
b)Gọi I,J lần lượt là trung điểm của AB và CD. CMR ba điểm I,J,O thẳng hàng
Bài 3. Cho tam giác ABC cân tại A. Đường phân giác trong của góc B và C lần lượt cắt AC tại D và AB tại E. a/ Chứng minh tg BCDE là ht cân và DE=BE. b/ Cho A= 50o. Tính các góc của ht cân BCDE.
Cho tam giác cân ABC (AB = AC), phân giác BD và CE. Gọi I là trung điểm của BC, J là trung điểm của ED, O là giao điểm của BD và CE. Chứng minh: a) Tứ giác BEDC là hình thang cân. b) BE = ED = DC. Hinh tam giac ABC (AB=AC) phan giac BD Va CE goiI la trung diem cua ED , O la giao diem cua BD va CE