Cho tam giác ABC vuông tại A . Trên tia đối của tia AB lấy D sao cho AD=AB a) CM: Tam giác CBD là tam giác cân b) gọi M là trung điểm của CD đường thẳng qua D và // với BC cắt đường thẳng BM tại E. Cm: BC= DE vã BC+BD>BE c) gọi G là giao điểm. Của AE và DM. Cm: BC=6GM
Cho tam giác ABC vuông tại A ,BD là tia phân giác góc B ,kẻ DE vuông góc BC tại góc E. a /chứng minh tam giác ABD bằng tam giác EBD b/ Tính BE biết BC = 15 cm, AC = 12 cm c/ Gọi M ,N lần lượt là trung điểm của AB và BE, K là giao điểm của AN với BD .Chứng minh ba điểm E,K,M thẳng hàng
Cho tam giác ABC vuông tại A và góc ABC = 60 độ.
a) So sánh AB và AC.
b) Trên BC lấy D sao cho BD=AB. Qua D dựng đường thẳng vuông góc với BC cắt tia đối của tia AB tại E.
C/m tam giác ABC = tam giác DBE.
c) Gọi H là giao điểm của ED và ÁC. C/m tia BH là tia phân giác của góc ABC.
d) Qua B dựng đường thẳng vuông góc với AB cắt đường thẳng ED tại K.
C/m tam giác HBK đều.
mọi người vẽ giúp mình hình với
cho ∆abc vuông tại a tia phân giác của góc ABC cắt ac tại i kẻ ih vuông bc. Gọi k là giao điểm của ab và hi. Chứng minh rằng : a. ∆abi = ∆hbi b. Bi là đg trung trực của đoạn thẳng ah c. ∆abh là tam giác đều d. Bi vuông ck
Cho tam giác ABC cân tại A ( ), trên cạnh BC lấy 2 điểm D và E sao cho BD = DE = EC. Kẻ ; , BH cắt CK tại G. a) Chứng minh tam giác ADE cân b) Chứng minh BH = CK c) Gọi M là trung điểm của BC, chứng minh A, M, G thẳng hàng d) Chứng minh AC > AD
Cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BD = BA, từ D vẽ đường thẳng vuông góc BC cắt AC tại E và tia BA tại F.
a) Chứng minh: ∆ABE = ∆DBE và so sánh đoạn EF với đoạn ED.
b) Chứng minh: ∆ CEF cân
c) Gọi M là trung điểm CF. Chứng minh: B, E, M thẳng hàng.
Vẽ hình giúp mình luôn nha mng :33
4/. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm
a/ Tính BC
b/ Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh
DBC = DCB.
c/Trên tia BD lấy điểm E sao cho DE = DC, Cm: ∆ BEC vuông => DF là phân giác góc ADE.
d/ Chứng minh: BE FC
cho tam giác abc vuông tại a, trên tia đối của tia ac lấy điểm d sao cho ac= ad. đường trung trực của đoạn ad cắt bd tại e.câu a. cho ab = 8 cm,ac=6cm, tính bc.câu b. cm góc eda = góc ead.câu c. gọi f là trung điểm bc. chứng minh : ab,ce, df đồng quy
Cho tam giác ABC vuông tại A có AB = 6cm, BC =10 cm.
a. Tính độ dài cạnh AC rồi so sánh các góc trong tam giác ABC.
b. Gọi trung điểm của AC là M. Vẽ đường thẳng vuông góc với AC tại M, đường thẳng này cắt AC tại I. Chứng minh tam giác AIM = tam giác CIM.
c. Chứng minh AI =\(\dfrac{1}{2}\) BC.
d. Hai đoạn thẳng BM và AI cắt nhau tại G. Chứng minh BC = 6.IG.