Cho tam giác ABC nội tiếp đường tròn (O; R) có \(\widehat{C}=45^0\) :
a) Tính diện tích hình quạt tròn AOB (ứng với cung nhỏ AB)
b) Tính diện tích hình viên phân AmB (ứng với cung nhỏ AB)
1. Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình quạt tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^o\)
2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm nội tiếp đường tròn (O). Tính diện tích hình tròn (O)
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình tròn giới hạn tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^0\)
Cho nửa đường tròn9O) đường kính AB. Gọi M là một điểm trên nửa đường tròn, kẻ MH⊥AB sao cho MH=6cm;BH=4cm. Ở phía trong của nửa đường tròn (O) vẽ các nửa đường tròn tâm I đường kính AH, nửa đường tròn tâm K đường kính BH. Diện tích phần giới hạn bởi ba nửa đường tròn là:
Hình viên phân là phần hình tròn giới hạn bởi một cung và dây căng cung ấy. Hãy tính diện tích hình viên phân AmB, biết góc ở tâm \(\widehat{AOB}=60^o\) và bán kính đường tròn là 5,1 cm.
Cho đường tròn (O; R). Chia đường tròn này thành ba cung có số đo tỉ lệ với 3, 4 và 5 rồi tính diện tích các hình quạt tròn được tạo thành ?
Lấy cạnh BC của một tam giác đều làm đường kính, vẽ một nửa đường tròn về cùng một phía với tam giác ấy đối với đường thẳng BC. Cho biết cạnh BC = a, hãy tính diện tích của hai hình viên phân được tạo thành.
Tính diện tích một hình quạt tròn có bán kính 6 cm, số đo cung là 36o.
cho đường tròn O đường kính AA'=2R.một dây cung BC vuông góc bán kính OA' tại trung điểm H của OA' a)chứng minh rằng tam giác OBA' và tam giác ABC là các tam giác đều.Tính cạnh tam giác ABC b)đường BO cắt đường tròn O tại D đường DH cắt đường tròn tại M.Tính DH;DM c)tính diện tích tam giác HMC