Cho tam giác ABC vuông ở A và đường cao AH. Vẽ đường tròn tâm O đường kính AB. Biết BH = 2cm, HC = 6cm. Tính :
a) Diện tích hình tròn (O)
b) Tổng diện tích hai hình viên phân AmH và BnH (ứng với các cung nhỏ)
c) Diện tích hình quạt tròn AOH (ứng với cung nhỏ AH)
1. Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình quạt tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^o\)
2. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm nội tiếp đường tròn (O). Tính diện tích hình tròn (O)
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R = 3cm. Tính diện tích hình tròn giới hạn tạo bởi hai bán kính OB,OC và cung nhỏ BC khi \(\widehat{BAC}=60^0\)
Hình viên phân là phần hình tròn giới hạn bởi một cung và dây căng cung ấy. Hãy tính diện tích hình viên phân AmB, biết góc ở tâm \(\widehat{AOB}=60^o\) và bán kính đường tròn là 5,1 cm.
Cho đường tròn (O; R). Chia đường tròn này thành ba cung có số đo tỉ lệ với 3, 4 và 5 rồi tính diện tích các hình quạt tròn được tạo thành ?
Tính diện tích một hình quạt tròn có bán kính 6 cm, số đo cung là 36o.
a) Tính diện tích hình tròn nội tiếp tam giác đều có độ dài mỗi cạnh 3cm b) Tính diệntích hình tròn ngoại tiếp ngũ giác đều có độ dài mỗi cạnh 4dm
Lấy cạnh BC của một tam giác đều làm đường kính, vẽ một nửa đường tròn về cùng một phía với tam giác ấy đối với đường thẳng BC. Cho biết cạnh BC = a, hãy tính diện tích của hai hình viên phân được tạo thành.
Cho đường tròn (O). Vẽ hai dây AC và BD bằng nhau và vuông góc với nhau tại I (điểm B nằm
trên cung nhỏ AC). Chứng minh rằng:
a) Tứ giác ABCD là hình thang cân.
b) Tổng diện tích hai hình quạt tròn AOB và COD bằng tổng diện tích hai hình quạt tròn AOD và
BOC (các hình quạt tròn ứng với các cung nhỏ).