Cho đường tròn tâm Ở, kẻ tia tiếp tuyến Ax. Trên tia Ax lấy điểm M sao cho AM = R√3. vẽ tiếp tuyến MC( C là tiếp điểm). Đường vuông góc với AB tại Ở cắt BC tại D. a) Cm BD// OM b) xác định tứ giác OBDM c) xác định tứ giác AODM D) gọi E là giao điểm của AD với OM. Gọi F là giao điểm của MC với OD. Chứng minh EF là tiếp tuyến của 0
Cho tam giác đều ABC cạnh 60 cm. Trên cạnh BC lấy điểm D sao cho BD = 20 cm. Đường trung trực của AD cắt các cạnh AB, AC lần lượt tại E và F. Kẻ DI vuông góc với AB tại I, DK vuông góc với AC tại K.
a) Tính độ dài các đoạn thẳng DI, BI, DK, KC.
b) Tính độ dài các cạnh của tam giác DEF.
Cho tam giác ABC nội tiếp đường tròn(O).Tia phân giác của góc BAC cắt đường tròn(O)tại A và D.Đường tròn tâm D,bán kính DB cắt đường thẳng AB tại B và Q,cắt đường thẳng AC tại C và P. a)CMR:OA vuông góc PQ b)Gọi K là giao điểm của BC và PQ.CMR:KB.KC=KP.KQ=R^2-DK^2(với DB=R:bán kính đường tròn(D))
Cho tam giác ABC có AB<AC. Tia phân giác của góc A là AD (D thuộc BC).Trên AC lấy E sao cho AE=AB.
a,Chứng minh rằng BD=ED
b,Gọi K là giao điểm của các đường thẳng AB và ED. Chứng minh rằng tam giác BDK bằng tam giác DEC
c,Tam giác AKC là tam giác gì?Tại sao
d,Chứng minh AD vuông góc với KC
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O); C ∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC tại I.
a) Chứng minh rằng góc BAC = 900
b) Trên tia đối của tia IA lấy điểm D sao cho IA = I
D.Tứ giác ABDC là hình gì? Vì sao?
c) Tính độ dài BC trong trường hợp OA = 7,2cm và O’A = 3,2cm
d) Gọi giao điểm của OI và AB là M; giao điểm của O’I và AC là N.
cho đường tròn (O) có đường kính BC cố định và điểm A thuộc (O). trên tia đối của AB lấy AD=AC, trên tia đối AC lấy AE=AB.
a) đường thẳng qua đường cao AH của tam giác ABC cắt DE tại M. Chứng tỏ M là tâm đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC vuông tại A có AB=1 , AC=2 .Có 6 điểm thuộc tam giác ABC (nằm trong hoặc nằm trên cạnh của tam giác ABC) .Chứng minh rằng tồn tại hai điểm có khoảng cách không vượt quá 1.
Cho tam giác ABC vuông tại A có AB=1 , AC=2 .Có 6 điểm thuộc tam giác ABC (nằm trong hoặc nằm trên cạnh của tam giác ABC) .Chứng minh rằng tồn tại hai điểm có khoảng cách không vượt quá 1.
Cho đường tròn (O;R) có đường kính BC, lấy điểm A thuộc (O) sao cho AB=R
a. Chứng minh tam giác ABC vuông và tính độ dài BC theo R.
b. Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Trên (O) lấy điểm D sao cho MD=MA (D khác A). Chứng minh MD là tiếp tuyến của (O).
c. Vẽ đường kính AK của (O), MK cắt (O) tại E (E khác K). Gọi H là giao điểm của AD và MO. Chứng minh ME.MK=MH.MO
d. Xác định tâm và bán kính của đường tròn ngoại tiếp tam giác MEH theo R.