a)∆abc; ^A=90°;^C=30°=>^B=60°
BD=DC=>AD=BC/2=DC
=>^DAC=^DCA=30°
^BAH=90°- ^B=30°
^BAH+^HAD+^DAC=^A=90°
=>^HAD=30°=DAC=>AD la pg=>dpcm
b.
kq (a)=> ∆ADH=∆AKD
=>AK=AH=>dpcm
c.kq(b)A=>C-AH=KC=>KC<DC(1)
kq(a)=>BC-AB=DC(2)
(1)&(2)=>dccn
a)∆abc; ^A=90°;^C=30°=>^B=60°
BD=DC=>AD=BC/2=DC
=>^DAC=^DCA=30°
^BAH=90°- ^B=30°
^BAH+^HAD+^DAC=^A=90°
=>^HAD=30°=DAC=>AD la pg=>dpcm
b.
kq (a)=> ∆ADH=∆AKD
=>AK=AH=>dpcm
c.kq(b)A=>C-AH=KC=>KC<DC(1)
kq(a)=>BC-AB=DC(2)
(1)&(2)=>dccn
cho tam giác ABC vuông tại A có AB = 6cm ; BC = 10cm trên cạnh BC lấy điểm D sao cho BD = 6cm vẽ đường vuông góc với BC cắt cạnh AC tại M câu a tính AC câu b tính chu vi tam giác ABC câu c chứng minh BM là đường phân giác của tam giác ABC
cho tam giác abc vuông tại a đường cao ah abc có ab<ac. Trên cạnh AC lấy điểm E sao cho AB = AE. Tia phân giác của góc A cắt BC tại D A trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh BE song song FC
tam giác abc vuông tại a (ab<ac). tia đối ac lấy điểm d sao cho ad=ab, tia đối ab lấy điểm e sao cho ae=ac. đường cao ah của tam giác abc tia ah cắt cạnh de tại m a kẻ đường thẳng vuông góc tại k đường thẳng cắt bc tại n
chứng minh
a,bc=de
b,
cho tam giác abc vuông tại a đường phân giác bk (k thuộc ac). kẻ ki vuông góc với bc i thuộc bc A chung minh abk=ibkB kẻ đường cao ah cua abc chung minh ai la tia pg cua hac C lấy điểm M thuộc tia AH sao cho AM=AC chứng minh IM vuông góc AC
cho tam giác abc có ab=6cm ac=8cm bc=10cm
a) hãy chứng minh abc là tam giác vuông
b) trên cạnh bc lấy e sao cho be=ba kẻ ed vuông góc ac (d thuộc ac)
chứng minh rằng bd là tia phân giác của b
c) gọi f là giao điểm của ed và ba .chứng minh rằng tam giác dec = tam giác daf từ đó suy ra df> de
d) cmr:ad vuông góc với cf
cho tam giác ABC vuông tại A , góc B = 60 độ . Tia phân giác của góc B cắt AC tại I
a) Tính góc C , góc ABI , góc CBI
b) Trên cạnh BC lấy điểm D sao cho AB= BD . Chứng minh tam giác ABI = tam giác DBI suy ra DI vuông góc với BC
c) Chứng minh D là trung điểm của BC
d) AB cắt DI tại K . Chứng minh tam giác KIC cân
e) Chứng minh AD// KC
g) gọi M là trung điểm của KC . Chứng minh B, I , M thẳng hàng
cho tam giác ABC có AB=AC .H là trung điểm của BC a, Chứng minh tam giác ABH=ACH b, Chứng minh AH vuống góc BC c, Trên cạnh AB lấy điểm M . Trên cạnh AC lấy điểm N sao cho AM =AN .gọi E là giao điểm của AH và NM .Chúng minh MN song song với BC ( ghi giả thiết kết luận nha )
Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
Cho tam giác ABC vuông tại A. Đường phân giác của góc B cắt AC tại .Từ D kẻ DE vuông góc với BC. Đường thẳng ED cắt BA tại F
a, Chứng minh tam giác ADF= tam giác EDC
b,chứng minh AD<DC
c,chứng minh tam giác BCF cân
d, gọi H là hình chiếu của A trên BC.biết HB= 9cm và HC =4cm tính AH
giúp mk vs cản ơn trước