Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uyên Thu

Cho tam giác ABC vuông ở A có AC=5cm và đường cao AH=3cm

1,Tính độ dài CH và CB

2,đường tròn đường kính AH cắt AB và AC theo thứ tự tại E và F.Tứ giác AEHF là hình gì?Vì sao?

3,Chứng minh tứ giác BEFC nội tiếp và EF là tiếp tuyến chung của đường tròn đường kính HB và đường tròn đường kính HC.

Akai Haruma
7 tháng 2 2022 lúc 23:32

Lời giải:

1. $CH=\sqrt{AC^2-AH^2}=\sqrt{5^2-3^2}=4$ (cm) theo định lý Pitago

Áp dụng hệ thức lượng trong tam giác vuông:

$BH=\frac{AH^2}{CH}=\frac{3^2}{4}=2,25$ (cm) 

$BC=BH+CH=2,25+4=6,25$ (cm) 

2. 

Vì $AH$ là đường kính nên $\widehat{AEH}=\widehat{AFH}=90^0$ (góc nt chắn nửa đường tròn)

Tứ giác $AEHF$ có $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

3. 

Vì $AEHF$ là hcn nên $\widehat{AEF}=\widehat{AHF}$
Mà $\widehat{AHF}=\widehat{C}$ (cùng phụ $\widehat{FHC}$)

$\Rightarrow \widehat{AEF}=\widehat{C}$ nên $BEFC$ là tứ giác nội tiếp.

3. Gọi $T$ là trung điểm $HB$ 

Tam giavs $BEH$ vuông tại $E$ nên $ET=\frac{1}{2}BH=TH$

$\Rightarrow ETH$ cân tại $T$

$\Rightarrow \widehat{TEH}=\widehat{THE}=\widehat{C}$ (hai góc đồng vị với $EF\parallel AC$)

$=\widehat{AEF}$

$\Rightarrow \widehat{TEF}=\widehat{TEH}+\widehat{HEF}=\widehat{AEF}+\widehat{HEF}=\widehat{AEH}=90^0$

$\Rightarrow TE\perp EF$ nên $EF$ là tiếp tuyến đường tròn đường kính $BH$

Tương tự $EF$ là tiếp tuyến đường tròn đường kính $CH$ 

Ta có đpcm.

Akai Haruma
7 tháng 2 2022 lúc 23:33

Hình vẽ:


Các câu hỏi tương tự
Linh Bùi
Xem chi tiết
Vũ Thị Phương Thảo
Xem chi tiết
Anhh Tiểu Anhh
Xem chi tiết
pastelw13
Xem chi tiết
nguyệt ánh
Xem chi tiết
Đỗ’s Dũng’s
Xem chi tiết
kakaruto ff
Xem chi tiết
Knight Dragon
Xem chi tiết
Phan PT
Xem chi tiết