Cho tam giác ABC vuông ở A, AB = 12cm, BC = 16cm. Đường phân giác góc A cắt BC tại D.
a) Tính BC, BD, CD
b) Vẽ đường cao AH. Tính AH, HD, AD
Cho tam giác ABC vuông ở A, AB=12cm , BC= 16cm. Đường phân giác góc A cắt BC tại D.
a) tính BC,BD,CD.
b) Vẽ đường cao AH. Tính AH, HD,AD.
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho \(\Delta ABC\) vuông ở \(A\), \(AB=12cm\), \(AC=16cm\) , đường phân giác góc \(A\) cắt \(BC\) tại \(D\).
a) Tính BC, BD,CD
b) vẽ đường cao Ah. Tính AH , HD, AD
cho tam giác ABC (A=90 độ),AB=6cm, AC=8cm vẽ đường cao AH đường phân giác BD của góc B cắt AH tại I. (D thuộc AC)
a.cm tam giác HAC đồng dạng với tam giác ABC
b.tính BC và HC
c.cm AB.BI=BD.HB
d.tính tỉ số diện tích của 2 tam giác HAC và HBA
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc). a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ; b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ; c) chứng minh rằng ae=ab ; d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham
cho tam giác abc vuông tại a (ab<ac), đường cao ah (h thuộc bc).
a) chứng minh rằng tam giác abh đồng dạng với tam giác cba ;
b) trên tia hc, lấy hd=ha. từ d vẽ đường thẳng song song với ah cắt ac tại điểm e. chứng minh rằng ce.ca=cd.cb ;
c) chứng minh rằng ae=ab ;
d) gọi m là trung điểm của đoạn be, chứng minh rằng dae=ham