Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Ngọc Huyền

Cho tam giác ABC vuông góc tại A. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA = HD.
a, Cho BH = 4cm, HA = 3cm. Tính AB.
b, Chứng minh tam giác AHC = tam giác DHC. Từ đó chứng minh tam giác ACD cân.
c, Chứng minh tam giác BDC vuông

Nguyễn Lê Phước Thịnh
25 tháng 2 2022 lúc 13:19

a: \(AB=\sqrt{BH^2+AH^2}=5\left(cm\right)\)

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó:ΔAHC=ΔDHC

Suy ra: AC=DC

hay ΔACD cân tại C

c: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABD cân tại B

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

hayΔBDC vuông tại D


Các câu hỏi tương tự
ミ★ΉảI ĐăПG 7.12★彡
Xem chi tiết
khánh nguyễn
Xem chi tiết
Phạm Nguyên Thảo My
Xem chi tiết
Phạm Nguyên Thảo My
Xem chi tiết
Phạm Nguyên Thảo My
Xem chi tiết
Nguyễn Thanh Thảo
Xem chi tiết
Nguyễn Nguyên Anh
Xem chi tiết
Tzngoc
Xem chi tiết
Tzngoc
Xem chi tiết