Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
mà AM là phân giác
nên AEMF là hình thoi
=>MA là tia phân giác của góc EMF
Xét tứ giác AEMF có
AE//MF
AF//ME
Do đó: AEMF là hình bình hành
mà AM là phân giác
nên AEMF là hình thoi
=>MA là tia phân giác của góc EMF
cho tam giác ABC (AB=AC). AM lcho tam giác ABC (AB=AC). AM là tia phân giác của góc BAC ( M thuộc BC) lấy I lấy I là trung điểcho tam giác ABC (AB=AC). AM là tia phân giác của góc BAC ( M thuộc BC) lấy I lấy I là trung điểm của AB trên MI lấy K sao cho N là trung điểm của MC trên tia AN lấy E sao cho tam giác N = NEm của AB trên MI lấy K sao cho N là trung điểm của MC trên tia AN lấy E sao cho tam giác N = NEà tia phân giác của góc BAC ( M thuộc BC) lấy I lấy I là trung điểm của AB trên MI lấy K sao cho N là trung đicho tam giác ABC (AB=AC). AM là tia phân giác của góc BAC ( M thuộc BC) lấy I lấy I là trung điểm của AB trên MI lấy K sao cho N là trung điểm của MC trên tia AN lấy E sao cho tam giác N = NEểm của MC trên tia AN lấy E sao cho tam giác N = NE
cho tam giác ABC điểm M trên cạnh BC vẽ ME song song với AB ( E thuộc AC); MF song song với AC ( F thuộc AB) Xác định vị trí của M để tia MA là tia phân giác của góc EMF
Cho tam giác ABC. Vẽ phân giác góc ngoài tại A của tam giác ABC. Từ B kẻ d//AB, d cắt AC tại E.
a) Chứng minh : d cắt AC tại E.
b) CMR :góc ABE = góc AEB
c)Vẽ m qua A và vuông góc vói AD, cắt BE tại F. CMR: AF là tia phân giác của góc EAB và m vuông góc với EB
cho góc nhọn xOy. Vẽ tia phân giác Oz của góc xOy. Lấy hai điểm M và N lần lượt thuộc tia Ox và tia Oy sao cho OM=ON. Lấy điểm I bất kỳ thuộc tia Oz. Chứng minh rằng A) tam giác OIM = tam giác OIN B) Góc OIM = Góc OIN C) IM = IN
Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D ( D AC) . Kẻ DE vuông góc với BC ( E BC)
a. Chứng minh: ABD = EBD.
b. Chứng minh: ABE là tam giác đều.
c. Tính độ dài cạnh BC.
d. Trên tia đối của tia AB lấy điiểm M sao cho AM = AB. Chứng minh : E,M,D thẳng hàng
Cho tam giác nhọc ABC (AB<AC); Gọi M là trung điểm của BC. Trên tia đối của tia MA xác định điểm E sao cho ME=MA
1. Chứng minh: tam giác MAC = tam giác MEB
2. Chứng minh AC=EB
3. Kẻ EH vuông góc với BC, (H thuộc BC). Chứng minh rằng EH<MA
Bài 1:cho ΔABC Vuông ở C ,có góc B=60 độ , tia phân giác của góc BAC cắt BC ở E,kẻ vuông góc với AB .(K thuộc AB ) ,kẻ BD vuông góc với AE (D thuộc AE)
Chứng minh rằng :a)AK=KB b)AD =BC
bài 2 :cho ΔABC cân tại A và hai đường trung tuyến BM,CN cắt nhau tại K
a)chứng minh ΔBNC=ΔCMB
b)chứng minh ΔBKC cân tại K
c)chứng minh BC < 4.KM
bài 3 :cho ΔABC vuông tại A có BD là phân giác ,Kẻ DE vuông góc BC (E thuộc BC).Gọi F là giao điểm của AB và DE
Chứng minh rằng:
a)BD là trung trực của AE (BD vuông góc với AE)
b)DF=DC
c)AD<DC
d)AE // FC
*Làm và vẽ hình hộ mình với các bạn ơi.Mình đang rất vội (CẢM ƠN CÁC BẠN RẤT NHIỀU)*
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó. Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK. Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD. Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB. Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau. Bài 9: Cho tam giác ABC có góc A bằng 900. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC? Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng. Bài 11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN Bài 12: Cho ∆ABC gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh : a) ∆AMD = ∆CMB b) AE // BC c) A là trung điểm của DE Bài 13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. a) Chứng minh: AB = CD b) Chứng minh: BD // AC c) Tính số đo góc ABD Bài 14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng: a) BE = CD b) ∆BMD = ∆CNE c) AM là tia phân giác của góc BAC Bài 15: Cho ABC cân tại A. Gọi M là trung điểm của cạnh BC. a) Chứng minh : ABM = ACM b) Từ M vẽ MH AB và MK AC. Chứng minh BH = CK c) Từ B vẽ BP AC, BP cắt MH tại I. Chứng minh IBM cân. Bài 16: Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh : a) AB // HK b) AKI cân c) d) AIC = AKC Bài 17: Cho ABC cân tại A ( Â < 90o ), vẽ BD AC và CE AB. Gọi H là giao điểm của BD và CE. a) Chứng minh: ABD = ACE b) Chứng minh AED cân c) Chứng minh AH là đường trung trực của ED d)Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh Bài 18: Cho ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh: a) HB = CK b) c)HK // DE d) AHE = AKD Bài 19: Cho ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) ADE cân b) ABD = ACE Bài 20: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh: a) BE = CD. b) BMD = CME c) AM là tia phân giác của góc BAC. Bài 21: Cho tam giác ABC (AB < AC) có AM là phân giác của góc A (M thuộc BC).Trên AC lấy D sao cho AD = AB. a) Chứng minh: BM = MD b) Gọi K là giao điểm của AB và DM . Chứng minh: DAK = BAC c) Chứng minh: AKC cân d) So sánh: BM và CM
\(Cho tam giác ABC có ba góc nhọn (AB < AC), M là trung điểm của BC. Trên tia đối tia MA lấy điểm E sao ch a/ Chứng minh: AMB = EMB và AC // BE. b/ Kẻ và . Chứng minh: SA = HE c/ Biết và . Tính số đo và d/ Gọi I là một điểm trên cạnh AC, K là một điểm trên cạnh EB sao cho AI = EK. Chứng minh: Ba điểm I, M, K thẳng hàng\)