a) Xét ΔABM và ΔDCM có:
BM=CM(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
AM=DM(gt)
=>ΔABM=ΔDCM(c.g.c)
b) Vì ΔABM=ΔDCM(cmt)
=>\(\widehat{ABM}=\widehat{DCM}\). Mà hai góc này pử vị trí sole trong
=>AB//DC
c)Xét ΔEBM và ΔFCM có:
\(\widehat{BEM}=\widehat{CFM}=90^o\)
BM=MC(gt)
\(\widehat{BME}=\widehat{CMF}\left(đđ\right)\)
=>ΔEBM=ΔFCM( cạnh huyền-góc nhọn)
=>ME=MF
=>M là trung điểm của EF
a) Xét ΔABM và ΔDCM, có:
MB = MC (gt)
∠AMB = ∠DCM (đối đỉnh)
MA = MD (gt)
Vậy ΔABM = ΔDCM (c-g-c)
b) Từ ΔABM = ΔDCM (chứng minh câu a)
Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)
Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong
Vậy AB // DC
c) Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)
Có: MB = MC (gt)
∠AMB = ∠DMC (đối đỉnh)
Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)
Suy ra: ME = MF (hai cạnh tương ứng)
Vậy M là trung điểm của EF