1.Cho tam giác ABC, gọi G là trọng tâm tam giác
a.Gọi H là điểm đối xứng với G qua B. CMR
vectơ HA - 5vectơ HB + vectơ HC = vectơ 0.
b.Gọi I và J là 2 điểm thoả mãn vectơ IA = 2vectơ IB , 3vectơ JA + 2vectơ JC = vectơ 0 . CM 3 điểm I,J,G thẳng hàng .
2.Cho tam giác đều ABC tâm O. M là điểm bất kì trong tam giác . Hạ MD,ME,MF lần lượt vuông góc với các cạnh BC,CA,AB.CMR vectơ MD + vectơ ME + vectơ MF = 3/2 vectơ MO
Cho tam giác ABC có trọng tâm G Chứng minh các VECTƠ a/GA+GB+GC=0 b/ MA+MB+MC=3MG (M là 1 điểm bất kỳ) c/ HA+HB-5HC=0 với H là điểm đối xứng của G qua C
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tam giác ABC đều và M tuỳ ý trong tam giác đó. Gọi A',B',C' là điểm đối xứng của M qua BC,CA,AB. Chứng minh tam gác ABC và tam giác A'B'C'. có cùng trọng tâm
Cho tứ giác ABCD. Gọi E,F lần lượt là trung điểm của AB, CD và O là trung điểm cừa. Chứng minh rằng: vectơ OA+OB+OC+OD= vectơ 0
Giải chi tiết giúp e với ạ e đang cần gấp ạ
Cho tam giác ABC có H là trực tâm . O là tâm đường tròn ngoại tiếp . Gọi B' là điểm đối xứng của B qua O. CM: \(\overrightarrow{AH}=\overrightarrow{BC}\)
Cho tam giác ABC có H là trực tâm . O là tâm đường tròn ngoại tiếp . Gọi B' là điểm đối xứng của B qua O. CM: \(\overrightarrow{AH}=\overrightarrow{B'C}\)
Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
cho tam giác ABC bất kỳ , gọi M,N,P lần lượt là trung điểm các cạnh AB , BC , CA. H ,H' lần lượt là trực tâm các tâm giác ABC,MNP K đồi xứng với H qua H' chứng minh HA +HB +HC =HK