a: Xét ΔBEC có
M là trung điểm của BC
MK//BE
Do đó: K là trung điểm của CE
b:
Xét ΔAMK có
D là trung điểm của AM
DE//MK
Do đó: E là trung điểm của AK
Ta có: AE=EK
mà EK=KC
nên AE=EK=KC
=>CE=2AE
a: Xét ΔBEC có
M là trung điểm của BC
MK//BE
Do đó: K là trung điểm của CE
b:
Xét ΔAMK có
D là trung điểm của AM
DE//MK
Do đó: E là trung điểm của AK
Ta có: AE=EK
mà EK=KC
nên AE=EK=KC
=>CE=2AE
cho tam giác ABC có AM là đường trung tuyến . Gọi D là trung điểm của AM . BD cắt AC tại E . Kẻ MK //BE ( K thuộc EC) chứng minh rằng 1, K là trung điểm của CE 2, CE =2AE
Cho tan giác ABC có AM là đường trung tuyến . D là trung điểm của AM , BD cắt AC tại E . Kẻ MK song song với BE (K thuộc EC)
A)K là trung điểm của CE
B)CE =2 AE
Cho tam giác ABC có AM là đường trung tuyến .Gọi D là trung điểm AM. BD cắt AC ở E.Kẻ MK //BE(K thuộc AD)
CMR
a)K là trung điểm CE
b)CE = 2AB
Bài 1: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 2: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Cho tam giác ABC trung tuyến AM (M thuộc BC) có I là trung điểm của AM. Tia BI cắt AC tại D. Gọi E là trung điểm của DC.
a) Chứng minh ME = \(\dfrac{1}{2}\) BD
b) Chứng minh D là trung điểm của AE.
c) Chứng minh BD = 4ID.
1. Cho tam giác ABC, các đường trung tuyến BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE song song và bằng IK. 2. Cho cho tam giác ABC, đường trung tuyến AM. Lấy điểm D thuộc AC sao cho DC = 2AD, gọi I là giao điểm của BD và AM. Chứng minh rằng AI = MI. 3.ChotamgiácABCvuôngtạiB,Â=600, phângiácAD.GọiM,N,Itheothứtựlà trung điểm của AD, AC, CD. a. Chứng minh rằng BMNI là hình thang cân. b. Tính các góc của tứ giác BMNI.
Bài 4.Cho tam giác ABC, đường trung tuyến AM. Gọi D là trung điểm của AM, E là giao điểm của BD và AC. Chứng minh AE = 1/2 EC
cho tam giác ABC có đường trung tuyến AM gọi D là trung điểm AM . E là giao điểm của BD và AC .
c/m AE=1/2 EC
1 cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE=IK
2 Cho tam giác ABC, đường trung tuyến AM, E là giao điểm BD và AC. CMR: AE = \(\dfrac{1}{2}\) EC
Bài 1: Cho △ ABC, đường trung tuyến AM. Gọi D là trung điểm của AM. Gọi E là giao của BD và AC. Kẻ MN // BE cắt AC tại N. CM rằng:
a) DE là đường trung bình của △AMN;
b) N là trung điểm của EC;
c) AE = EN = NC
Bài 2: Cho △ ABC, các đường trung tuyến AM,CN cắt nhau tại K. Gọi I, H lần lượt là trung điểm của AK, CK. CM rằng:
a) MN là đường trung bình của △ BAC
b) MN // IH
c) MN = IH
Bài 3: Cho △ ABC, đường trung tuyến AM. Lấy điểm D, E thuộc cạnh AB sao cho AD = DE = EB. Gọi I là giao của CD và AM. CM rằng:
a) ME // DC
b) I là trung điểm của AM
c) DC = 4DI