Qua tâm G của tam giác ABC, kẻ đường thẳng a cắt BC tại M và cắt AB tại N, kẻ đường thẳng b cắt AC tại P và AB tại Q, đồng thời góc giữa a và b bằng \(60^0\). Chứng minh rằng tứ giác MPNQ có một hình thang cân ?
Cho tam giác ABC. Các trung tuyến AA', BB', CC' cắt nhau tại G
a) Chứng minh rằng tam giác A'B'C' là ảnh của tam giác ABC qua phép vị tự tỉ số k xác định
b) Kẻ đường cao xuất phát từ đỉnh A của tam giác ABC. Chứng minh rằng ảnh của đường cao này quay phép vị tự \(V_{\left(G,k\right)}\) là đường trung trực của đoạn thẳng BC
c) Gọi H là trực tâm của tam giác ABC và O là tâm đường tròn ngoại tiếp của tam giác ABC. Chứng minh rằng phép vị tự \(V_{\left(G,k\right)}\) nói trên biến điểm H thành điểm O. Suy ra rằng ba điểm H, G, O nằm trên một đường thẳng (đường thẳng Ơ - le của tam giác)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm O . Gọi M là trung điểm của BC; N,P lần lượt là chân đường cao kẻ từ B và C . Đường tròn đi qua 3 điểm M,N,P có phương trình : (T) : \(\left(x-1\right)^{^{ }2}+\left(y+\dfrac{1}{2}\right)^2=\dfrac{25}{4}\) . Phương trình đường tròn ngoại tiếp tam giác ABC là
Dựng tam giác BAC vuông cân tại A có C là một điểm cho trước, còn hai đỉnh A, B lần lượt thuộc hai đường thẳng a, b song song với nhau cho trước ?
Cho hai điểm A, B và đường tròn tâm O không có điểm chung với đường thẳng AB. Qua mỗi điểm M chạy trên đường tròn (O) dựng hình bình hành MABN. Chứng minh rằng điểm N thuộc một đường tròn xác định ?
Bài 3 Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy. Biết SA = a AB = 2a RC = a * sqrt(3) a) Chứng minh CD. (SAD) SD và (ABCD). c) Tính khoảng cách từ điểm D đến (SBC). b) Tính góc giữa
Cho vectơ \(\overrightarrow{v}\), đường thẳng d vuông góc với giá của \(\overrightarrow{v}\). Gọi d' là ảnh của d qua phép tịnh tiến theo vectơ \(\dfrac{1}{2}\overrightarrow{v}\). Chứng minh rằng phép tịnh tiến theo vectơ \(\overrightarrow{v}\) là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d' ?
Cho đường tròn (O; R), gọi BC là dây cung cố định của đường tròn và A là một điểm di động trên đường tròn. Tìm tập hợp trực tâm H của tam giác ABC ?
Cho hình chữ nhật ABCD. Gọi O là tâm đối xứng của nó. Gọi I, F, J, E lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tìm ảnh của tam giác AEO qua phép đồng dạng có được từ việc thực hiện liên tiếp phép đối xứng qua đường thẳng IJ và phép vị tự tâm B, tỉ số 2 ?