a: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
b: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=1/2
=>góc SDA=27 độ
a: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
b: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=1/2
=>góc SDA=27 độ
Cho tam giác ABC. Trong nửa mặt phẳng có bờ là đường thẳng BC không chứa điểm A, ta dựng hình vuông BCDE. Kẻ DM vuông góc với AB, EN vuông góc với AC, và kẻ đường cao AH của tam giác ABC. Chứng minh rằng ba đường thẳng MD, EN và AH đồng quy.
Qua tâm G của tam giác ABC, kẻ đường thẳng a cắt BC tại M và cắt AB tại N, kẻ đường thẳng b cắt AC tại P và AB tại Q, đồng thời góc giữa a và b bằng \(60^0\). Chứng minh rằng tứ giác MPNQ có một hình thang cân ?
Cho hình vuông ABCD tâm I có E,F,G,H lần lượt là trung điểm AB, BC, CD, AD. M,N,P,Q là các điểm kí hiệu như hình vẽ.
Gọi H là ảnh của tam giác AHE lần lượt qua các phép biến hình\(V_{\left(I;-1\right)}\); \(Q_{\left(I;90^o\right)}\); \(V_{\left(B;2\right)}\). Hỏi H là hình nào trong các hình sau:
A. CBD. B. DCA. C. BAC. D. ADB
Gọi A', B' và C' tương ứng là ảnh của ba điểm A, B,C qua phép đồng dạng. Chứng minh rằng nếu \(\overrightarrow{AB}=p\overrightarrow{AC}\) thì \(\overrightarrow{A'B'}=p\overrightarrow{A'C}'\) trong đó p là một số. Từ đó chứng minh rằng phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng nếu điểm B nằm giữa hai điểm A và C thì điểm B' nằm giữa hai điểm A' và C' ?
Cho hai điểm A, B và đường tròn tâm O không có điểm chung với đường thẳng AB. Qua mỗi điểm M chạy trên đường tròn (O) dựng hình bình hành MABN. Chứng minh rằng điểm N thuộc một đường tròn xác định ?
Cho đường tròn (C) và hai điểm cố định phân biệt A, B thuộc (C). Với mỗi điểm M chạy trên đường tròn (trừ hai điểm A, B) ta xét điểm N sao cho AMBN là hình bình hành. Chứng minh rằng tập hợp các điểm N cũng nằm trên một đường tròn xác định ?
Cho hình chữ nhật ABCD. Gọi O là tâm đối xứng của nó. Gọi I, F, J, E lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tìm ảnh của tam giác AEO qua phép đồng dạng có được từ việc thực hiện liên tiếp phép đối xứng qua đường thẳng IJ và phép vị tự tâm B, tỉ số 2 ?
Cho hình bình hành ABCD có AB cố định, đường chéo AC có độ dài bằng m không đổi. Chứng minh rằng khi C thay đổi, tập hợp các điểm D thuộc một đường tròn cố định.
Dựng tam giác BAC vuông cân tại A có C là một điểm cho trước, còn hai đỉnh A, B lần lượt thuộc hai đường thẳng a, b song song với nhau cho trước ?