Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hồng Nhung

Cho tam giác ABC nội tiếp (O;R)
a) chứng minh : \(2R=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}=\dfrac{BC}{sinA}\)

b) Gọi H là trực tâm của tam giác ABC. Tia AO cắt (O) tại D . Gọi I là trung điểm của BC. chứng minh cho H,I,D thẳng hàng.

Nhiên An Trần
9 tháng 2 2019 lúc 10:47

Rối hình đừng hỏi, vì mình vẽ hình ra nháp nó đã rối sẵn rồi :)Violympic toán 9

Kẻ đường kính AD, BE, CF

\(\Delta ABD\) có: \(\hat{ABD}=90^o\)(góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow\)\(\sin\hat{ADB}\)\(=\dfrac{AB}{AD}\)(tỉ số lượng giác) mà \(\hat{ACB}=\hat{ADB}\)(cùng chắn \(\stackrel\frown{AB}\)) \(\Rightarrow\)\(\sin\hat{ACB}\)\(=\dfrac{AB}{AD}\)\(\Rightarrow2R=\)\(AB\over\sin\hat{ACB}\)

Chứng minh tương tự với \(\Delta BCE,\Delta CAF\)\(\Rightarrow2R=\)\(BC\over\sin\hat{BAC}\)\(=\)\(AC\over\sin\hat{ABC}\)

Từ 2 điều trên ta được điều phải chứng minh

b, Ta có: \(\hat{ACD}=90^o\)(góc nội tiếp chắn nửa đường tròn)\(\Rightarrow\left\{{}\begin{matrix}AC\perp CD\\AC\perp BK\left(gt\right)\end{matrix}\right.\Rightarrow\)BK//CD\(\Leftrightarrow\)BH//CD

Chứng minh tương tự ta có: CH // BD (cùng vuông góc với AB)

Tứ giác BHCD có: BH // CD, CH // BD (cmt) nên là hình bình hành có 2 đường chéo HD và BC cắt nhau tại trung điểm I của BC nên H, I, D thẳng hàng


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
Music Hana
Xem chi tiết
ngọc linh
Xem chi tiết
ThuuAnhh---
Xem chi tiết
Cô Pê
Xem chi tiết
admin tvv
Xem chi tiết
Hoàng Việt Hà
Xem chi tiết
Big City Boy
Xem chi tiết