Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi AH, BK là đường cao của tam giác ABC (H thuộc BC; K thuộc AC). Các tia AH, BK lần lược cắt (O) tại các điểm thứ hai là D, E a)Trên hình vẽ có bao nhiêu tứ giác nội tiếp một đường tròn. Hãy chứng minh b Chứng minh rằng: góc AHC bằng Góc ADC.
Cho tam giác ABC nhọn, AB<AC và nội tiếp (O). D là điểm đối xứng với A qua O. Tiếp tuyến với O tại D cắt BC tại E. Đường thẳng DE lần lượt cắt AB, AC tại K, L. Đường thẳng qua A song song với EO cắt DE tại F.
Đường thẳng qua D song song với EO lần lượt cắt AB, AC tại M, N. Chứng minh rằng EF tiếp xúc với đường tròn ngoại tiếp tam giác BCF.
2. Cho tam giác nhọn ABC nội tiếp đường tròn (O;R). Ba đường cao AE, BF, CG cắt nhau tại H (với E thuộc BC, F thuộc AC, G
thuộc AB).
a/ Chứng minh các tứ giác AFHG và BGFC là các tứ giác nội tiếp.
b/ Gọi I và M lần lượt là tâm các đường tròn ngoại tiếp của các tứ giác AFHG và BGFC. Chứng minh MG là tiếp tuyến của đường tròn tâm I .
c/ Gọi D là giao điểm thứ hai của AE với đường tròn tâm O. Chứng minh: EA2 + EB2 + EC2 + ED2 = 4R2.
cho tứ giác ABCD nội tiếp (o) có AD cắt BC tại E , AB cắt CD tại F . Gọi EI là đường đối trung của tam giác EAB ( I nằm trên đường tròn ngoại tiếp tam giác AEB) . FI cắt (o) lần lượt tại M , N . Chứng tỏ rằng IM = IN .
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròm (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và SC lần lượt tại M và N. Chứng minh rằng: a) tam giác AMN là tam giác cân b) các tam giác EAI và DAI là những tam giác cân c) Tứ giác AMIN là hình thoi
cho tam giác ABC nội tiếp đường tròn (O) , BD và CE lần lượt là các tia phân giác xủa góc ABC , ACB ( D , E thuộc (O) ) cắt nhau tại I . DE cắt AB , AC tại M, N . Chứng minh Tam giác AMN cân và tam giác AID cân
( vẽ hình giúp em với ạ )
Ngọc Phạm Kim
Hôm kia lúc 10:28
cho tứ giác ABCD nội tiếp (o) có AD cắt BC tại E , AB cắt CD tại F . Gọi EI là đường đối trung của tam giác EAB ( I nằm trên đường tròn ngoại tiếp tam giác AEB) . FI cắt (o) lần lượt tại M , N . Chứng tỏ rằng IM = IN .
Cho tam giác ABC nhọn (AB < AB) nội tiếp (O;R) , kẻ đường cao AD của tam giác ABC, M và N là hình chiếu của D trên AB và AC. MN cắt BC tại P
1) C/m các tứ giác AMDN và BCMN nội tiếp.
2) C/m: PB.PC= PM.PN và OA vuôn góc với MN.
3) Tính diện tích hình viên phân giới hạn dây AB và cung nhỏ AB khi BA= R\(\sqrt{3}\)
4) Gọi H là giao điểm của PA với (O), I là tâm đường tròn ngoại tiếp tam giác BMN. C/m: H,D, I thẳng hàng.
cho tam giác ABC vuông tại A(AB<AC) ngoại tiếp đường tròn tâm O. Gọi D,E,F lần lượt là các tiếp điểm của đường tròn tâm o với AB,AC,BC. BO cắt EF tại I, M là điểm di chuyển trên CE
1. Tính góc BIF
2 Gọi H là giao điểm của BM với EF. CMR nếu AM=AB thì tứ giác ABHI nội tiếp
3 Gọi N là giao điểm của BM với cung EF nhỏ của đường tròn tâm O. P, Q lần lượt là hình chiếu của N trên các đường thẳng DE, DF. Tìm vị trí của M để PQ lớn nhất