cho tam giác ABC nhọn ABC nội tiếp đường tròn (O).E là điểm chính giữa cung nhỏ BC. Gọi M là điểm trên cạnh AC sao cho EM=MC( M khác C) N là giao điểm BM với đường tròn tâm O ( N khác B). Gọi I là giao điểm của BM và AE, K là giao điểm của AC với EN. c/m tứ giác EKMI nội tiếp
Cho tứ giác ABCD nội tiếp (O), M là điểm chính giữa của cung AB. Nối M với D, M với C cắt AB lần lượt ở E và P. Chứng minh tứ giác PEDC nội tiếp được đường tròn.
Cho tam giác ABC vuông tại C có ABC = 60° Dựng tam giác cân BEC ra phía ngoài tam giác ABC sao cho BEC = 150°. Gọi D là điểm đối xứng với C qua AB, F là giao điểm của AB và DE, G là giao điểm của AB và CD.
1) Chứng minh tứ giác ABEC nội tiếp.
2) Tính số đo góc BED.
3) Chứng minh hai đường thẳng BC và FG song song.
Mn giúp mk với ạ
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Trên tia đối của AB và CA lấy theo thứ tự các điểm M, N sao cho AM = CN. Chứng minh tứ giác AMNO là tứ giác nội tiếp.
Trên đường tròn tâm O có một cung AB và S là điểm chính giữa của cung đó. Trên dây AB lấy hai điểm E và H. Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D. Chứng minh EHCD là một tứ giác nội tiếp ?
Cho đường tròn tâm O. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB,AC. Gọi M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB,AC lần lượt ở D và E.Gọi I và K lần lượt là giao điểm của OD và OE với BC. Chứng minh tứ giác OBDK nội tiếp
Cho tam giác ABC có AB<AC nội tiếp (O), các đường cao AD,BE,CF cắt nhau tại H. CH cắt (O) tại giao điểm thứ 2 là P, PD cắt (O) tại giao điểm thứ 2 là Q, Co cắt DE tại K, AQ cắt DE tại I, đường tròn ngoại tiếp tam giác FDK cắt AD tại Ma, Chứng minh tam giác FHD đồng dạng với tam giác ADEb, Chứng minh AQ chia đôi DEc, Chứng minh MI song song AC
Cho tam giác ABC có AB<AC nội tiếp (O), các đường cao AD,BE,CF cắt nhau tại H. CH cắt (O) tại giao điểm thứ 2 là P, PD cắt (O) tại giao điểm thứ 2 là Q, Co cắt DE tại K, AQ cắt DE tại I, đường tròn ngoại tiếp tam giác FDK cắt AD tại Ma, Chứng minh tam giác FHD đồng dạng với tam giác ADEb, Chứng minh AQ chia đôi DEc, Chứng minh MI song song AC
Cho đường tròn (O), dây AB. Các tiếp tuyến của đường tròn tại A và B cắt nha tại C. Trên dây AB lấy điểm E(EA>EB). Đường vuông góc với OE tại E cắt CA và CB theo thứ tự ở I và K. Chứng minh rằng
1) OAEI, OEBK là các tứ giác nội tiếp 3) AI = BK
2) OIK là tam giác cân 4) OICK là tứ giác nội tiếp