Cho đường tròn tâm O. Trên nửa đường tròn đường kính AB lấy hai điểm C, D. Từ C kẻ CH vuông góc với AB, nó cắt đường tròn tại điểm thứ hai là E. Từ A kẻ AK vuông góc với DC, nó cắt đường tròn tại điểm thứ hai là F. Chứng minh rằng :
a) Hai cung nhỏ CF và DB bằng nhau
b) Hai cung nhỏ BF và DE bằng nhau
c) DE = BF
cho tam giác ABC vuông tsij A, AB<AC, đường tròn tâm N đường kính AB, và đường tròn tâm M đường kính Ac cắt nhau tại H , chứng minh :A, M ,H ,N cùng thuộc 1 đường tròn
Cho nửa đường tròn tâm O, đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A,B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D. Biết CD=a và BD= 3AC
a) CMR: OC và OD vuông góc
b) Tính tỉ số AC^2+BD^2/ CD^2
c) Tính theo a diện tích tứ giác ACDB
Cho tam giác ABC. Trên tia đối của toa AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD. \(\left(H\in BC,K\in BD\right).\)
a) Chứng minh rằng OH > OK.
b) So sánh hai cung nhỏ BD và BC.
Cho tam giác ABC có \(AB > AC. \) Trên cạnh AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK xuống BC (\(H\in BC,K\in BD\))
a) Chứng minh rằng OH <OK
b) So sánh hai cung nhỏ BD và BC
Bài 1:Cho hv ABCD gọi O là tâm đường tròn đi qua 4 điểnm ABCD
a) Tính số đo góc ỏ tâm AOB và góc BOC
b) Tính số đo cung nhỏ AB, CD.
Bài 2: Cho điểm S nằm ngoài (O; R) kẻ tiếp tuyến SA (A là tiếp điểm ). SO cắt đường tròn tại B biết ÁD =35 độ . Tính số đo cung AB.
Bài 3: Hai tiếp tuyến của (O) tại A và B cắt nhau tại S biết ÁB =60 độ
a) Tính số đo cung lớn AB
b) Lấy điểm C bất kì thuộc cungnhor AB, vẽ tiếp tuyến của đường tròn tại C cắt SA tại D, cắt SB tại E. OD; OE cắt cung nhỏ AB tại I, K. Chứng tỏ số đo cung IK ko phụ thuộc vào vị trí điểm C
cho (o;r) đường kính AB . lấy C trên tuyến tại A của O sao cho AC bằng 2R. gọi D là giao điểm BC và O
a) c/m tam giác ABC cân
b) kẻ dây AF vuông OC tại H . c/m CE tiếp tuyến của (O;R)
Cho điểm A nằm ngoài đường tròn (O;R); vẽ các tiếp tuyến AB, AC đến đường tròn .Trên cung lớn BC lấy điểm K bất kì tiếp tuyến K cắt AB và AC tại P và Q. OP và OQ cắt (O) tại M và N. Cmr khoảng cách từ O đến MN không phụ thuộc vào vị trí của K