a) Trong ∆ABC, có BC < BA + AC.
Mà AC = AD suy ra BC < BD.
Theo định lí về dây cung và khoảng cách từ dây đến tâm, ta có OH > Ok.
b) Ta có BC < BD (cmt)
Nên suy ra BC < BD ( liên hệ cung và dây)
a) Trong ∆ABC, có BC < BA + AC.
Mà AC = AD suy ra BC < BD.
Theo định lí về dây cung và khoảng cách từ dây đến tâm, ta có OH > Ok.
b) Ta có BC < BD (cmt)
Nên suy ra BC < BD ( liên hệ cung và dây)
Cho tam giác ABC có \(AB > AC. \) Trên cạnh AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK xuống BC (\(H\in BC,K\in BD\))
a) Chứng minh rằng OH <OK
b) So sánh hai cung nhỏ BD và BC
cho đường tròn tâm O đường kính AB. Từ A và B vẽ hai dây cung AC và BD song song với nhau . So sánh hai cung nhỏ AC và BD
cho đường tròn tâm O đường kính Ab. Từ A và B vẽ hai dây cung AC và BD song song với nhau .So sánh hai cung nhỏ AC và BD
Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại hai điểm A và B. Kẻ các đường kính AOC, AO'D. Gọi E là giao điểm thứ hai của AC với đường tròn (O').
a) So sánh các cung nhỏ BC, BD.
b) Chứng minh rằng B là điểm chính giữa của cung EBD (tức là điểm B chia cung EBD thành hai cung bằng nhau).
Cho tam giác ABC, O là giao điểm của ba đường trung trực. H, I, K lần lượt là trung điểm của AB, BC, AC. Biết OH > OK > OI. Hãy so sánh độ dài ba cạnh AB, AC, BC của tam giác ABC.
Cho nửa (O) đường kính AB . Gọi C,D thuộc nửa đường tròn ( C thuộc cung AD) . AD cắt BC tại H , AC cắt BD tại E . Chứng minh EH vuông góc AB
Vẽ nửa đường tròn đường kính BC của rABC đều phía ngoài tam giác. Trên nửa đường tròn đó lấy hai điểm D và E sao cho cung BD = cung DE = cung EC. Các tia AD, AE cắt cạnh BC tại M và N. Chứng minh rằng BM=MN=NC
Cho nửa đường tròn tâm O đường kính AB và C là điểm chính giữa của nửa đường tròn trên các tia AB và CD lần lượt lấy các điểm M và N sao cho cung CM = cung BN Chứng minh a, AM= CN
b, M N = AC = CB
cho (o;r) đường kính AB . lấy C trên tuyến tại A của O sao cho AC bằng 2R. gọi D là giao điểm BC và O
a) c/m tam giác ABC cân
b) kẻ dây AF vuông OC tại H . c/m CE tiếp tuyến của (O;R)