Cho tam giác ABC nhọn.Dựng ra phía ngoài tam giác này các tam giác đều ABC và ACF.Gọi M,N lần lượt là trung điểm của AE và CF.Trên cạnh BC lấy điểm D sao cho CD=BC/4.CMR DM vuong góc với DN
Bài 1: Cho tam giác ABC vuông cân tại C. Trên AC, CB lấy lần lượt điểm D,E sao cho CD=CE. Từ D,C hạ vuông góc với AE. Các đường vuông góc này cắt AB thứ tự là K,L. C/m: KL=KB.
Bài 2: Cho tứ giác ABCD,M và N lần lượt là trung điểm của AB và CD, biết: AD cắt MN tại E, BC cắt MN tại F. Với điều kiện nào của tứ giác thì ABCD có: góc AEM=FEM
Bài 3: Cho tam giác ABC có 3 góc nhọn, các đường cao CH, BK. Gọi D Và E lần lượt là hình chiếu của B và C trên đường thẳng HK. C/m: DK=EH.
BÀI 1: Cho tam giác ABC. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 1/4AB; AE=1/2AC. DE cắt đường thẳng BC tại F. CM: CF = 1/2BC BÀI 2: Cho tam giác ABC. Điểm D thuộc tia đối của tia BA sao cho BD=BA, điểm M là trung điểm của BC. Gọi K là giao điểm của DM và AC. CM: AK = 2KC Help me! Mình đang cần gấp ạ.!!!
cho tam giác đều abc , độ dài các cạnh là a . gọi o là điểm bất kỳ trong tam giác. Trên cạnh ab , bc , ac lần lượt lấy các điểm m , n , p sao cho om//bc , on//ca và op//ab . Xác định vị trí điểm o để tam giác mnp là tam giác đều. Tính chu vi tam giác đều đó.
mình cần gấp
Cho tam giác ABC có trung tuyến AM (M thuộc BC). Trên cạnh AB, AC lần lượt lấy hai điểm D, E sao cho AD = DE = EB. Gọi I là giao điểm của AM và CD. Chứng minh AI = IM.
`Cho tam giác ABC , trên nửa mặt phẳng bờ AC không chứa B , lấy điểm D bất kì trên AC . Gọi M, N, P, Q lần lượt là trung điểm cạnh AB, BC, AD, CD. CMR:
1 MN// PQ và MQ// PN
2 MN+ NP+ PQ+ MQ= AC+ BD
Cho tam giác ABC . trên cạnh AB lấy 2 điểm D, F sao cho AD = DF = FB. Các trung tuyến AE, BG của tam giác ABC lần lượt cắt CD, CF tại H, K.
a) chứng mình GH, EK, AB đồng qui.
b) chứng mình AB = 4HK.
Cho tam giác ABC cân tại A. Lấy điểm M trên cạnh AB, điểm N trên cạnh AC sao cho AM = CN. Gọi I là trung điểm của MN. Đường thẳng qua I song song với BC cắt AB, AC lần lượt tai D, E. Chứng minh rằng DE là đường trung bình của tam giác ABC.
Cho tam giác ABC có góc Â>90°. Bên ngoài tam giác ABC vẽ tam giác ABD, ACE vuông cân tại A a) Gọi M,N,k lần lượt là trung điểm BD, CE, BC. Chứng minh tam giác MNK là tam giác vuông cân