Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn ( O, R) , AD là đường cao của tam giác ABC và AM là đường kính của đường tròn (O), gọi E là hình chiếu của B trên AM. a) CMR : góc ACM = 90° và BAC=MAC b) CMR : Tứ giác ABDE nội tiếp c) CM : DE // MC
Bài 2: Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R ). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H.Gọi S là diện tích tam giác ABC. a) Chứng minh các tử giác AEHF và AEDB nội tiếp được. b) Chứng minh AB. BC. AC=4RS c) Chứng minh OC vuông góc với DE và ( DE+EF+FD). R = 2S
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF. Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o bán kính r có tia phân giác góc abc và acb lần lượt cắt đường tròn o tại e và f
CM: OF vuông góc với AB và OE vuông góc với AC
gọi M là giao điểm của OF và AB , N là giao điểm của OE và AC. CM : AMON nội tiếp
Cho tam giác ABC nhọn, có AB<AC. vẽ đường cao AD, đường phân giác AO của tam giác ABC, vẽ (O) tiếp xúc với AB,AC lần lượt ở M,N. a)cm:M,N,O,D,A cùng thuộc 1 đ tròn. b)CM: góc BMD =góc CDN. c) qua O kẻ đường thẳng vuông góc với BC cắt MN ở I. AI cắt BC ở K. cm: K là trung điểm của BC.
Cho tam giác ABC nhọn. Đường tròn (I;r) nội tiếp tam giác, tiếp xúc với các cạnh BA, CA, AB lần lượt tại các điểm D, E, F. Hình chiếu của các điểm B, C, D trên EF lần lượt là X, Y, K. a) CMR: BD.KC=BK.CD b) Gọi G là điểm nằm trên cung nhỏ EF của đường tròn (I). Tiếp tuyến tại G của đường tròn (I) cắt AB, AC tại T, J. Tìm vị trí của G cung nhỏ EF để diện tích tam giác ATJ đạt giá trị lớn nhất. c) Gọi H là trực tâm của tam giác ABC. CMR: IKD=HKD Chỉ được dùng kiến thức hk1 lớp 9. Giúp tớ với ạ! Mai tớ phải nộp rùii
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF
a, tính tổng \(^{AE^2}\)+\(^{EF^2}\) theo R
b, Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cảm ơn bạn ạ