Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF và H là trực tâm. Chứng minh rằng:
a) tam giác AFE và tam giác ABC đồng dạng.
b) AD.HD=DB.DC
c) AH.HD=BH.HE=CH.HF
d) HD/AD + HE/BE + HF/CF =1
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac ABE đồng dạng tam giác ACF
b) Chứng minh EC.HF=BF.HE
c) Chứng minh góc HEF = góc HCB
d) biết AE=9cm, AB=12cm. tính s tam giác ABC phần
tam giác AEF
Cho tam giác ABC nhọn có đường cao AD,BE,CF cắt nhau tại H
a, cmr tam giác AEB đồng dạng với tam giác AFC và AE.AC=AF.AB
b, cmr góc AFE = góc ACB
c, giả sử góc BAC = 45 độ.cm điện tích tam giác AEF bằng diện tích tứ giác BFEC
d, cmr H là giao bà đường phân giác của tam giác DEF
Cho tam giác ABC nhọn có đường cao AD,BE,CF cắt nhau tại H
a, cmr tam giác AEB đồng dạng với tam giác AFC và AE.AC=AF.AB
b, cmr góc AFE = góc ACB
c, giả sử góc BAC = 45 độ.cm điện tích tam giác AEF bằng diện tích tứ giác BFEC
d, cmr H là giao bà đường phân giác của tam giác DEF
giúp mik vs mik cần gấp ạ
cho tam giác ABC có H là trực tâm, Các đường thẳng vuông góc với AB tại B và vuông góc với AC tại C cắt nhau ở D
a, chứng minh tứ giác BDCH là hình bình hành
b, Tính góc BDC, biết góc BAC=60o
help me!!!
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng
cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H.
a) góc AEF = góc ABC
b) EB là tia phân giác của góc DEF