Bài 1: Cho tam giác ABC (AB<AC). Gọi M,N ,P lần lượt là trung điểm AB, AC, BC.
a) Chứng minh tứ giác BMNP là hình bình hành.
b) Kẻ đường cao AH của tam giác ABC. Gọi K là điểm đối xứng với H qua M. Chứng minh tứ giác AKBH là hình chữ nhật.
c) Chứng minh tứ giác MNPH là hình thang cân.
d) Gọi O là điểm đối xứng với H qua Ab. Chứng minh OK vuông góc với OH.
Cho tam giác ABC vuông tại A đường cao AH . E,F lần lượt là chân vuông góc kẻ từ H -> AB và AC
a. Tứ giác AEHF là hình gì ? Tại sao?
b. Gọi I và K lần lượt là trung điểm của BH và CH. chứng minh EFKI là hình thang vuông
c. Gọi Q là điểm đối xứng với H qua F, P đối xứng với H qua E. Chứng minh 3 điểm O,A,P thẳng hàng
Cho ∆ABC vuông tại A có đường cao AH. Từ H kẻ HN vuông AC ( N thuộc AC ), kẻ HM vuông AB ( M thuộc AB )
a) Chứng minh : tứ giác AMHN là hình chữ nhật
b) Gọi D là điểm đối xứng của H qua M; E đối xứng H qua N. Chứng minh tứ giác AMNE là hình bình hành
c) Chứng minh : A là trung điểm của DE.
Chứng minh : BC2 = BD2 + CE2 + 2BH.HC
Bài 5: Cho tam giác ABC nhọn( AB<AC). Các đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Gọi K là điểm đối xứng với H qua M.
a) Chứng minh tứ giác BHCK là hình bình hành.
b) Chứng minh BK vuông góc với AB.
c) Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G. Tìm điều kiện của tam giác ABC để tứ giác HGKC là hình thang cân.
Cho tam giác ABC vuông tại A, AB< AC. Đường cao AH. D đối xứng với A qua H. Đường thẳng kẻ qua D và song song với AB cắt BC và AC lần lượt tại M và N. Gọi I là trung điểm của MC. Cm IN=HN
P/S: có câu a là chứng minh ABDM là hình thoi, câu b là cm AM vuông góc vs CD nhưng các bạn chỉ cần cm hộ m câu c như trên thôi nha. Cảm ơn
Cho ∆ABC vuông tại A có đường cao AH. Từ H kẻ HN vuông AC ( N thuộc AC ), kẻ HM vuông AB ( M thuộc AB )
a) Chứng minh tứ giác AMHN là hình chữ nhật.
b) Gọi D là điểm đối xứng của H qua M; E là điểm đối xứng H qua N. Chứng minh tứ giác AMNE là hình bình hành
c) Chứng minh A là trung điểm DE.
Chứng minh BC2 = BD2 + CE2 + 2BH.HC
1. Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từB cắt đường thẳng vuông góc với AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH.
c. Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm H, G, O thẳng hàng
Cho tam giác ABC. Đường cao AH. I là trung điểm của AC. E đối xứng H qua I . Kẻ AH vuông góc với HK , ÌF vuông góc với BC
a. Tứ giác AHCE là hình j ? Tại sao?
b. E , F , K thẳng hàng
Cho tam giác ABC cân tại AH là đường cao .Gọi M,N lần lượt là rung điểm AB,AC.Biết AH=16cm,BC=12cm
a) Tính diện tích tam giác ABC và độ dài MN
b) Gọi E đối xứng với H qua M.chứng minh tứ giác AHBE là hình chữ nhật
c) gọi F đối xứng F đối xứng A qua H.Chứng minh ABFC là hình thoi
d) Gọi K là hình chiếu của A trên FC.Goi I là trung điểm của HK.chứng minh BK vuông góc với IF