1: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AC\cdot AD\)
2: Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó:ΔADE∼ΔABC
1: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{A}\) chung
Do đó: ΔABD∼ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AC\cdot AD\)
2: Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó:ΔADE∼ΔABC
Cho tam giác ABC có 3 góc nhọn, đường cao BD, CE cắt nhau tại H.
a) Chứng minh rằng AE.AB = AD.AC
b) Chứng minh rằng tam giác ABC đồng dạng với tam giác ADE
c) AH cắt BC tại F. Vẽ FM, FN lần lượt vuông góc với AB và AC, M thuộc AB, N thuộc AC. Chứng minh MN // ED
chỉ mình câu c thôi ạ
Cho tam giác ABC vuông tại A có AB=8cm, AC=6cm, AD là tia phân giác góc A (D∈BC)
a. Tính tỉ số DB/DC và độ dài đoạn BD
b. Kẻ đường cao AH (H∈BC). Chứng minh rằng tam giác AHB đồng dạng tam giác CHA
c. Kẻ DE vuông góc AB (EϵAB) Tính SDEB
cho tam giác ABC vuông tại A, có AB = 3cm; AC = 4cm. Vẽ đường cao AH ( H ∈ BC)
a) Tính độ dài BC
b) Chứng minh tam giác HBA ∼ HAC
c) Chứng minh HA2 = HB.HC
d) Kẻ đường phân giác AD (D ∈ BC). Tính các độ dài DB và DC?
GIÚP MÌNH VỚI NHÉ, ĐANG CẦN GẤP!!!
CẢM ƠN MỌI NGƯỜI RẤT NHIỀU!!
Bài 1: Cho tam giác ABC vuông tại A có AB = 12cm; AC = 16cm. Kẻ đường cao AH (H thuộcBC) a/ Chứng minh HAC đồng dạng ABC. b/ Tính độ dài các đoạn thẳng BC, HC. c/ Từ B vẽ đường phân giác BD . Tính độ dài các đoạn thẳng DA, DC.
Cho tam giác ABC (AB < AC) có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H
a/ Chứng minh tg AFC và tgAEB đồng dạng và suy ra AE.AC=AF.AB
b/ Chứng minh tg AEF và tg ABC đồng dạng
c/ Từ D vẽ DM vuông góc với AC tại M. Qua M vẽ đường thẳng song song với EF cắt AB tại N. Chứng minh DN vuông góc với AB
d/ Gọi I là giao điểm của MN và AD. Gọi K là điểm đối xứng của H qua D. Chứng minh tg ANI và tg AKB đồng dạng và AD2 = AI.AK
mik đang cần gấp thks mn nhìu
cho tam giác ABC vuông tại A ( AB < AC ) . từ trung điểm M của BC vẽ đường thẳng vuông góc với BC cắt AC tại N và cắt tia BA tại E
a, CM tam giác ABC đồng dạng với MBE
b, CM BC^2 = 4MN.ME
c, cho AB =9cm , AC=12cm . tính ME , BE
d, từ M kẻ đường thẳng song song với BE cắt CE tại F . tính V hình lăng trụ đứng , đáy là tam giác CMF và chiều cao là 10 cm
Cho tam giác ABC có gốc A là góc vuông đường cao AH, đường phân giác góc B cắt AC tại D cắt AH tại E
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) biết AB = 9cm , BC= 15cm. Tính DC và AD
c) gọi I là trung điểm của ED. CM : góc BIH= góc ACB
Cho hình vuông ABCD. Trên cạnh BC lấy điểm E bất kỳ, trên tia đối của tia CD lấy điểm F sao cho CF=CE a. CM: DE=BF b. BD cắt EF tại K, DE cắt BF tại H. CM: FK, DH là các đường cao của tam giác DBF c. Gọi M là trung điểm của EF, O là giao điểm của AC và BD. CM: OM//AK
cho tam giác ABC vuông tại A ( AB<AC) , đường phân giác AD . Gọi M và N thứ tự là hình chiếu của của B và C trên đường thẳng AD . Chứng minh rằng
a, tam giác BMD đồng dạng tam giác CND
b, BM + CN > 2.AD
( giúp mik vs ạ )