a/\(\Delta AEB\sim\Delta AFC\left(g-g\right)\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
\(\Delta AEF\sim\Delta ABC\left(\frac{AE}{AF}=\frac{AB}{AC},chung\widehat{A}\right)\)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\)
Mà: \(\left\{{}\begin{matrix}\widehat{AEF}+\widehat{BEI}=90\\\widehat{ABC}+\widehat{FCI}=90\end{matrix}\right.\)\(\Rightarrow\widehat{BEI}=\widehat{FCI}\left(1\right)\)
Từ (1) và I chung nên \(\Delta IBE\sim\Delta IFC\left(g-g\right)\Rightarrow\frac{IB}{IF}=\frac{IE}{IC}\)
\(\Rightarrow IB.IC=IE.IF\)(2)
Mà: \(IM^2-\frac{BC^2}{4}=\left(IM-\frac{BC}{2}\right)\left(IM+\frac{BC}{2}\right)=\left(IM-BM\right)\left(IM+MC\right)=IB.IC\)
Cộng với (2) có ĐPCM