Cho ΔABC nhọn (AB<AC) ba đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh ΔHFB đồng dạng với ΔHEC
b) Chứng minh BH.BE = BF.BA
c) Chứng minh góc BFD bằng góc ACD
d) Lấy M là điểm đối xứng của H qua E và gọi I là giao điểm của BH với DF.
Chứng minh: BI.BM = BH.BE
Cho tam giác ABC (AB<AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh ΔBFH đồng dạng với ΔCEH và FA.BH=FH.AC
b) Gọi I là trung điểm của BC và K là điểm đối xứng với H qua I. Chứng minh ΔAKC đồng dạng ΔAFH.
c) AK cắt HC tại O. Lấy điểm thuộc đoạn thẳng AC sao cho EF // OM. Chứng minh HM vuông góc với AD.
Câu a có thể không cần nhưng mình xin đáp án câu b, c với ạ.
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H. Gọi I là giao điểm của ba đường trung trực của tam giác ABC. Kẻ IM vuông góc BC tại M. Lấy điểm K đối xứng với A qua I
a) CM: góc ACK = 90 độ
b) CM: AH = 2.IM
c) CM: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=2\)
Cho 2 điểm B,C cố định và điểm A di động sao cho tam giác ABC có 3 góc nhọn, đường cao AD,BE,CF giao nhau tại H, AH giao EF tại K
a) CM: Tam giác EHC đồng dạng với Tam giác FHB
b) Góc EFC= góc EBC
c) Góc BFD=góc ACB
d) CM: AD.HK=AK.HD
e) TÌm điều kiện để AD.HD đạt giá trị lớn nhất
Cho \(\Delta\)ABC nhọn (AB<AC),các đường cao AD,BE,CH cắt nhau tại H.Chứng minh:
1)AE.AC=AF.AB
2)\(\Delta\)AEF đồng dạng \(\Delta\)ACB
3)\(\Delta\)FHE đồng dạng \(\Delta\)BHC
4)DH là phân giác của góc EDF
5)BF.BA+CE.CA=\(^{BC^2}\)
6)Gọi K là giao điểm của EF và BC.Chứng minh:KE.KF=KB.KC